Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacokinet Pharmacodyn ; 51(3): 227-242, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38308741

ABSTRACT

Balovaptan is a brain-penetrating vasopressin receptor 1a antagonist previously investigated for the core symptoms of autism spectrum disorder (ASD). A population pharmacokinetic (PK) model of balovaptan was developed, initially to assist clinical dosing for adult and pediatric ASD studies and subsequently for new clinical indications including malignant cerebral edema (MCE) and post-traumatic stress disorder. The final model incorporates one-compartment disposition and describes time- and dose-dependent non-linear PK through empirical drug binding and a gut extraction component with turnover. An age effect on clearance observed in children was modeled by an asymptotic function that predicts adult-equivalent exposures at 40% of the adult dose for children aged 2-4 years, 70% for 5-9 years, and at the full adult dose for ≥ 10 years. The model was adapted for intravenous (IV) balovaptan dosing and combined with in vitro and ex vivo pharmacodynamic data to simulate brain receptor occupancy as a guide for dosing in a phase II trial of MCE prophylaxis after acute ischemic stroke. A sequence of three stepped-dose daily infusions of 50, 25 and 15 mg over 30 or 60 min was predicted to achieve a target occupancy of ≥ 80% in ≥ 95% of patients over a 3-day period. This model predicts both oral and IV balovaptan exposure across a wide age range and will be a valuable tool to analyze and predict its PK in new indications and target populations, including pediatric patients.


Subject(s)
Dose-Response Relationship, Drug , Models, Biological , Humans , Child , Child, Preschool , Adult , Antidiuretic Hormone Receptor Antagonists/pharmacokinetics , Antidiuretic Hormone Receptor Antagonists/administration & dosage , Adolescent , Male , Female , Benzazepines/pharmacokinetics , Benzazepines/administration & dosage , Young Adult , Brain Edema/drug therapy , Middle Aged , Brain/metabolism , Brain/drug effects
2.
CPT Pharmacometrics Syst Pharmacol ; 8(7): 460-468, 2019 07.
Article in English | MEDLINE | ID: mdl-31077576

ABSTRACT

Concentration-QTcF data obtained from two phase I studies in healthy volunteers treated with a novel phosphodiesterase-4 inhibitor currently under development for the treatment of chronic obstructive pulmonary disease were analyzed by means of mixed-effects modeling. A simple linear mixed-effects model and a more complex model that included oscillatory functions were employed and compared. The slope of the concentration-QTcF relationship was not significantly greater than 0 in both approaches, and the simulations showed that the upper limit of the 90% confidence interval around the mean ΔΔQTcF is not expected to exceed 10 ms within the range of clinically relevant concentrations. An additional simulation study confirmed the robustness of the simple linear mixed-effects model for the analysis of concentration-QT data and supported the modeling of data obtained from studies with different designs (parallel and crossover).


Subject(s)
Heart Rate/drug effects , Phosphodiesterase 4 Inhibitors/administration & dosage , Sulfonamides/administration & dosage , para-Aminobenzoates/administration & dosage , Clinical Trials, Phase I as Topic , Female , Healthy Volunteers , Humans , Male , Models, Theoretical , Phosphodiesterase 4 Inhibitors/pharmacology , Randomized Controlled Trials as Topic , Sulfonamides/pharmacology , para-Aminobenzoates/pharmacology
3.
Eur J Pharm Biopharm ; 108: 220-225, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27648957

ABSTRACT

Formulating poorly water soluble drugs using ordered mesoporous silica materials is an emerging approach to tackle solubility-related bioavailability problems. The current study was conducted to assess the bioavailability-enhancing potential of ordered mesoporous silica in man. In this open-label, randomized, two-way cross-over study, 12 overnight fasted healthy volunteers received a single dose of fenofibrate formulated with ordered mesoporous silica or a marketed product based on micronized fenofibrate. Plasma concentrations of fenofibric acid, the pharmacologically active metabolite of fenofibrate, were monitored up to 96h post-dose. The rate (Cmax/dose increased by 77%; tmax reduced by 0.75h) and extent of absorption (AUC0-24h/dose increased by 54%) of fenofibrate were significantly enhanced following administration of the ordered mesoporous silica based formulation. The results of this study serve as a proof of concept in man for this novel formulation approach.


Subject(s)
Fenofibrate/pharmacokinetics , Silicon Dioxide/chemistry , Water/chemistry , Administration, Oral , Adult , Area Under Curve , Biological Availability , Cross-Over Studies , Female , Fenofibrate/analogs & derivatives , Fenofibrate/chemistry , Healthy Volunteers , Humans , Limit of Detection , Male , Middle Aged , Porosity , Solubility
4.
J Microsc ; 228(Pt 3): 264-71, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18045321

ABSTRACT

The SAC8.5, a low-cost Peltier-cooled black and white 8-bit CCD camera for astronomy, was evaluated for its use in imaging microscopy. Two camera-microscope configurations were used: an epifluorescence microscope (Nikon Eclipse TE2000-U) and a bottom port laser scanning confocal microscope system (Zeiss LSCM 510 META). Main advantages of the CCD camera over the currently used photomultiplier detection in the scanning setup are fast image capturing, stable background, an improved signal-to-noise ratio and good linearity. Based on DAPI-labelled Chinese Hamster Ovarian cells, the signal-to-noise ratio was estimated to be 4 times higher with respect to the currently used confocal photomultiplier detector. A linear relationship between the fluorescence signal and the FITC-inulin concentrations ranging from 0.05 to 1.8 mg mL(-1) could be established. With the SAC8.5 CCD camera and using DAPI, calcein-AM and propidium iodide we could also distinguish between viable, apoptotic and necrotic cells: exposure to CdCl(2) caused necrosis in A6 cells. Additional examples include the observation of wire-like mitochondrial networks in Mito Tracker Green-loaded Madin-Darby canine kidney cells. Furthermore, it is straightforward to interface the SAC8.5 with automated shutters to prevent rapid fluorophore photobleaching via easy to use astrovideo software. In this study, we demonstrate that the SAC8.5 black and white CCD camera is an easy-to-implement and cost-conscious addition to quantitative fluorescence microfluorimetry on living tissues and is suitable for teaching laboratories.


Subject(s)
Cytophotometry/methods , Microscopy, Fluorescence/economics , Microscopy, Fluorescence/methods , Animals , Cell Line , Cricetinae , Cricetulus , Dogs , Sensitivity and Specificity
5.
Eur J Pharm Sci ; 24(5): 465-75, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15784336

ABSTRACT

The aim of this study was to develop a population pharmacokinetic model for interspecies allometric scaling of pegylated r-HuEPO (PEG-EPO) pharmacokinetics to man. A total of 927 serum concentrations from 193 rats, 6 rabbits, 34 monkeys, and 9 dogs obtained after a single dose of PEG-EPO, administered by the i.v. (dose range: 12.5-550 microg/kg) and s.c. (dose range: 12.5-500 microg/kg) routes, were pooled in this analysis. An open two-compartment model with first-order absorption and lag time (Tlag) and linear elimination from the central compartment was fitted to the data using the NONMEM V software. Body weight (WT) was used as a scaling factor and the effect of brain weight (BW), sex, and pregnancy status on the pharmacokinetic parameters was investigated. The final model was evaluated by means of a non-parametric bootstrap analysis and used to predict the PEG-EPO pharmacokinetic parameters in healthy male subjects. The systemic clearance (CL) in males was estimated to be 4.08WT1.030xBW-0.345 ml/h. In females, the CL was 90.7% of the CL in males. The volumes of the central (Vc) and the peripheral (Vp) compartment were characterized as 57.8WT0.959 ml, and 48.1WT1.150 ml, respectively. Intercompartmental flow was estimated at 2.32WT0.930 ml/h. Absorption rate constant (Ka) was estimated at 0.0538WT-0.149. The absolute s.c. bioavailability F was calculated at 52.5, 80.2, and 49.4% in rat, monkey, and dog, respectively. The interindividual variability in the population pharmacokinetic parameters was fairly low (<35%). Non-parametric bootstrap confirmed the accuracy of the NONMEM estimates. The mean model predicted pharmacokinetic parameters in healthy male subjects of 70 kg were estimated at: CL: 26.2 ml/h; Vc: 3.6l; Q: 286 l/h; Vp: 6.9l, and Ka: 0.031 h-1. The population pharmacokinetic model developed was appropriate to describe the time course of PEG-EPO serum concentrations and their variability in different species. The model predicted pharmacokinetics of PEG-EPO in humans suggest a less frequent dosing regimen relative to erythropoietin and darbepoetin, potentially leading to a simplification of anemia management.


Subject(s)
Erythropoietin/pharmacokinetics , Animals , Dogs , Humans , Macaca fascicularis , Models, Biological , Polyethylene Glycols/pharmacokinetics , Rabbits , Rats , Rats, Sprague-Dawley , Species Specificity
6.
J Pharm Sci ; 93(12): 3027-38, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15503315

ABSTRACT

The purpose of this study was to model the pharmacokinetics of the pegylated human erythropoietin (PEG-EPO) after single-dose administration in rats, and to evaluate the influence of weight, sex, and pregnancy status on the pharmacokinetic parameters. A total of 436 serum concentrations from 193 Sprague-Dawley rats were obtained from four pharmacokinetic/toxicokinetic studies, in which a single dose of PEG-EPO was administered by the intravenous (i.v.; dose range: 2.5 to 500 microg/kg) and subcutaneous (s.c.; dose range: 12.5 to 500 microg/kg) route. Pharmacokinetic analysis was performed using nonlinear mixed effect modeling (NONMEM V software) to determine the population mean of pharmacokinetic parameters and the variances of the interindividual random effects. The effect of weight, sex, and pregnancy status on the pharmacokinetic parameters was evaluated by forward inclusion and backward elimination process, using the likelihood ratio test. Nonparametric bootstrap analysis was employed as an internal model evaluation technique to qualify the model developed. An open two-compartment model with linear elimination from the central compartment, a first-order absorption with lag time characterized the serum concentration-time profiles of PEG-EPO after i.v. and s.c. administration. For a male rat of 0.24 kg, the average CL, Vc, Q, Vp, Ka, Tlag, and F was estimated to be 0.728 mL/h, 15.8 mL, 0.373 mL/h, 6.99 mL, 0.0618 h(-1), 3.13 h, and 48.8%, respectively. A twofold increase in weight corresponded with a 170 and 238% increase in CL and Vc, respectively. In female rats, Vp was reduced by 11%, whereas F was increased by 15%. No effect of pregnancy status on any of the parameters could be identified. The interindividual variability in CL, Vc, Vp, Ka, and F was estimated at 10.7, 14.7, 16.6, 11.0, and 13.6%, respectively. Nonparametric bootstrap analysis confirmed the accuracy and the precision of the NONMEM parameter estimates. A population pharmacokinetic approach was used to integrate the knowledge gathered from several pharmacokinetic/toxicokinetic studies in rats. The pharmacokinetics of PEG-EPO in the rat was successfully modeled using a two-compartmental model with a linear elimination from the central compartment and a first-order absorption process with lag time. Weight and sex, but not pregnancy status, were identified as covariates of interest during preclinical development. The population pharmacokinetic model developed will be further used for the purpose of interspecies scaling and PK/PD modeling.


Subject(s)
Erythropoietin/pharmacokinetics , Polyethylene Glycols/pharmacokinetics , Animals , Erythropoietin/administration & dosage , Female , Humans , Male , Polyethylene Glycols/administration & dosage , Pregnancy , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...