Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
3 Biotech ; 10(6): 268, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32523862

ABSTRACT

Low phytate soybeans are desirable both from a nutritional and economic standpoint. Inositol 1, 3, 4, 5, 6-pentakisphosphate 2-kinase (IPK1), optimizes the metabolic flux of phytate generation in soybean and thus shows much promise as a likely candidate for pathway regulation. In the present study, the differential spatial and temporal expression profiling of GmIpk1 and its two homologs Glyma06g03310 and Glyma04g03310 were carried out in Glycine max L. var Pusa 9712 revealing the early stages of seed development to be the potential target for gene manipulation. NCBI databank was screened using BLASTp to retrieve 32 plant IPK1 sequences showing high homology to GmIPK1 and its homologs. Bio-computational tools were employed to predict the protein's properties, conserved domains, and secondary structures. Using state-of-the-art in silico physicochemical approach, the three-dimensional (3D) GmIPK1 protein model (PMD ID-PM0079931), was developed based on Arabidopsis thaliana (PDB ID: 4AQK). Superimposition of 4AQK and best model of GmIPK1 revealed that the GmIPK1 aligned well and shows a sequence identity score of 54.32% with 4AQK and a low RMSD of 0.163 nm and almost similar structural features. The modeled structure was further refined considering the stereochemical geometry, energy and packing environment between the model and the template along with validation of its intrinsic dynamics. Molecular dynamics simulation studies of GmIPK1 were carried out to obtain structural insights and to understand the interactive behavior of this enzyme with ligands ADP and IP6. The results of this study provide some fundamental knowledge on the distinct mechanistic step performed by the key residues to elucidate the structure-function relationship of GmIPK1, as an initiative towards engineering "low phytate soybean".

2.
Sci Rep ; 9(1): 7744, 2019 05 23.
Article in English | MEDLINE | ID: mdl-31123331

ABSTRACT

Phytic acid (PA), the major phosphorus reserve in soybean seeds (60-80%), is a potent ion chelator, causing deficiencies that leads to malnutrition. Several forward and reverse genetics approaches have ever since been explored to reduce its phytate levels to improve the micronutrient and phosphorous availability. Transgenic technology has met with success by suppressing the expression of the PA biosynthesis-related genes in several crops for manipulating their phytate content. In our study, we targeted the disruption of the expression of myo-inositol-3-phosphate synthase (MIPS1), the first and the rate limiting enzyme in PA biosynthesis in soybean seeds, by both antisense (AS) and RNAi approaches, using a seed specific promoter, vicilin. PCR and Southern analysis revealed stable integration of transgene in the advanced progenies. The transgenic seeds (T4) of AS (MS14-28-12-29-3-5) and RNAi (MI51-32-22-1-13-6) soybean lines showed 38.75% and 41.34% reduction in phytate levels respectively, compared to non-transgenic (NT) controls without compromised growth and seed development. The electron microscopic examination also revealed reduced globoid crystals in the Protein storage vacoules (PSVs) of mature T4 seeds compared to NT seed controls. A significant increase in the contents of Fe2+ (15.4%, 21.7%), Zn2+ (7.45%, 11.15%) and Ca2+ (10.4%, 15.35%) were observed in MS14-28-12-29-3-5 and MI51-32-22-1-13-6 transgenic lines, respectively, compared to NT implicating improved mineral bioavailability. This study signifies proof-of-concept demonstration of seed-specific PA reduction and paves the path towards low phytate soybean through pathway engineering using the new and precise editing tools.


Subject(s)
Glycine max/genetics , Myo-Inositol-1-Phosphate Synthase/genetics , Phytic Acid/metabolism , Biological Availability , Fabaceae/genetics , Fabaceae/growth & development , Gene Expression Regulation, Plant/genetics , Genetic Engineering/methods , Minerals/metabolism , Myo-Inositol-1-Phosphate Synthase/metabolism , Phosphorus/metabolism , Phytic Acid/adverse effects , Phytic Acid/chemistry , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Promoter Regions, Genetic/genetics , RNA Interference/physiology , RNA, Antisense/genetics , Seed Storage Proteins/genetics , Seeds/genetics , Glycine max/growth & development
3.
Front Plant Sci ; 9: 804, 2018.
Article in English | MEDLINE | ID: mdl-29963066

ABSTRACT

Soybean is one of the leading oilseed crop in the world and is showing a remarkable surge in its utilization in formulating animal feeds and supplements. Its dietary consumption, however, is incongruent with its existing industrial demand due to the presence of anti-nutritional factors in sufficiently large amounts. Phytic acid in particular raises concern as it causes a concomitant loss of indigestible complexed minerals and charged proteins in the waste and results in reduced mineral bioavailability in both livestock and humans. Reducing the seed phytate level thus seems indispensable to overcome the nutritional menace associated with soy grain consumption. In order to conceive our objective we designed and expressed a inositol polyphosphate 6-/3-/5-kinase gene-specific RNAi construct in the seeds of Pusa-16 soybean cultivar. We subsequently conducted a genotypic, phenotypic and biochemical analysis of the developed putative transgenic populations and found very low phytic acid levels, moderate accumulation of inorganic phosphate and elevated mineral content in some lines. These low phytic acid lines did not show any reduction in seedling emergence and displayed an overall good agronomic performance.

4.
Plant Physiol Biochem ; 123: 331-341, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29289899

ABSTRACT

Phytic acid (PA) is implicative in a spectrum of biochemical and physiological processes involved in plant stress response. Inositol 1,3,4, Tris phosphate 5/6 kinase (ITPK), a polyphosphate kinase that converts Inositol 1,3,4 trisphosphate to Inositol 1,3,4,5/6 tetra phosphate, averting the inositol phosphate pool towards PA biosynthesis, is a key regulator that exists in four different isoforms in soybean. In the present study, in-silico analysis of the promoter region of ITPKs was done and among the four isoforms, promoter region of GmITPK2 showed the presence of two MYB binding elements for drought inducibility and one for ABA response. Expression profiling through qRT-PCR under drought and salinity stress showed higher expression of GmITPK2 isoform compared to the other members of the family. The study revealed GmITPK2 as an early dehydration responsive gene which is also induced by dehydration and exogenous treatment with ABA. To evaluate the osmo-protective role of GmITPK2, attempts were made to assess the bacterial growth on Luria Broth media containing 200 mM NaCl, 16% PEG and 100 µM ABA, individually. The transformed E. coli BL21 (DE3) cells harbouring the GmITPK2 gene depicted better growth on the media compared to the bacterial cells containing the vector alone. Similarly, the growth of the transformed cells in the liquid media containing 200 mM NaCl, 16% PEG and 100 µM ABA showed higher absorbance at 600 nm compared to control, at different time intervals. The GmITPK2 recombinant E. coli cells showing tolerance to drought and salinity thus demonstrated the functional redundancy of the gene across taxa. The purity and specificity of the recombinant protein was assessed and confirmed through PAGE showing a band of ∼35 kDa on western blotting using Anti- Penta His- HRP conjugate antibody. To the best of our knowledge, the present study is the first report exemplifying the role of GmITPK2 isoform in drought and salinity tolerance in soybean.


Subject(s)
Escherichia coli , Glycine max/genetics , Osmotic Pressure , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Plant Proteins , Salinity , Dehydration/enzymology , Dehydration/genetics , Escherichia coli/enzymology , Escherichia coli/genetics , Gene Expression , Phosphotransferases (Alcohol Group Acceptor)/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Glycine max/enzymology
5.
3 Biotech ; 8(1): 50, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29354361

ABSTRACT

Soybean genome encodes a family of four inositol 1,3,4 trisphosphate 5/6 kinases which belong to the ATP-GRASP group of proteins. Inositol 1,3,4 trisphosphate kinase-2 (GmItpk2), catalyzing the ATP-dependent phosphorylation of Inositol 1,3,4 trisphosphate (IP3) to Inositol 1,3,4,5 tetra phosphate or Inositol 1,3,4,6 tetra phosphate, is a key enzyme diverting the flux of inositol phosphate pool towards phytate biosynthesis. Although considerable research on characterizing genes involved in phytate biosynthesis is accomplished at genomic and transcript level, characterization of the proteins is yet to be explored. In the present study, we report the isolation and expression of single copy Itpk2 (948 bp) from Glycine max cv Pusa-16 predicted to encode 315 amino acid protein with an isoelectric point of 5.9. Sequence analysis revealed that GmITPK2 shared highest similarity (80%) with Phaseolus vulgaris. The predicted 3D model confirmed 12 α helices and 14 ß barrel sheets with ATP-binding site close to ß sheet present towards the C-terminus of the protein molecule. Spatio-temporal transcript profiling signified GmItpk2 to be seed specific, with higher transcript levels in the early stage of seed development. The present study using various molecular and bio-computational tools could, therefore, help in improving our understanding of this key enzyme and prove to be a potential target towards generating low phytate trait in nutritionally rich crop like soybean.

6.
3 Biotech ; 8(1): 54, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29354365

ABSTRACT

Designing low-phytate crops without affecting the developmental process in plants had led to the identification of ABCC5 gene in soybean. The GmABCC5 gene was identified and a partial gene sequence was cloned from popular Indian soybean genotype Pusa16. Conserved domains and motifs unique to ABC transporters were identified in the 30 homologous sequences retrieved by BLASTP analysis. The homologs were analyzed for their evolutionary relationship and physiochemical properties. Conserved domains, transmembrane architecture and secondary structure of GmABCC5 were predicted with the aid of computational tools. Analysis identified 53 alpha helices and 31 beta strands, predicting 60% residues in alpha conformation. A three-dimensional (3D) model for GmABCC5 was developed based on 5twv.1.B (Homo sapiens) template homology to gain better insight into its molecular mechanism of transport and sequestration. Spatio-temporal real-time PCR analysis identified mid-to-late seed developmental stages as the time window for the maximum GmABCC5 gene expression, a potential target stage for phytate reduction. Results of this study provide valuable insights into the structural and functional characteristics of GmABCC5, which may be further utilized for the development of nutritionally enriched low-phytate soybean with improved mineral bioavailability.

7.
Food Chem ; 245: 246-253, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29287367

ABSTRACT

Radiation processing of soybean, varying in seed coat colour, was carried out at dose levels of 0.25, 0.5 and 1 kGy to evaluate their potential anti-proliferative and cytoprotective effects in an in vitro cell culture system. Irradiated and control black (Kalitur) and yellow (DS9712) soybean extracts were characterized in terms of total phenolics, flavonoids and anthocyanins, especially cyanidin-3-glucoside (C3G). Using an epithelial cell line, BEAS-2B the potential cytoprotective effects of soybean extracts were evaluated in terms of intracellular ROS levels and cell viability. The most relevant scavenging effect was found in Kalitur, with 78% decrease in ROS, which well correlated with a 33% increase in C3G after a 1 kGy dose. Results evidenced a correspondence between in vitro antioxidant activity and a potential health property of black soybean extracts, exemplifying the nutraceutical role of C3G. To our knowledge this study is the first report validating the cytoprotective effects of irradiated black soybean extracts.


Subject(s)
Dietary Supplements , Glycine max/chemistry , Glycine max/radiation effects , Plant Extracts/pharmacology , Anthocyanins/analysis , Antioxidants/chemistry , Antioxidants/pharmacology , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Radiation , Flavonoids/analysis , Gamma Rays , Glucosides/analysis , Humans , Polyphenols/analysis , Reactive Oxygen Species/metabolism , Seeds/chemistry , Seeds/radiation effects
8.
Plant Biotechnol (Tokyo) ; 33(5): 341-350, 2016.
Article in English | MEDLINE | ID: mdl-31367185

ABSTRACT

Soybean like many other crops, in this genomic era, has well-established genomic database which provides a wide range of opportunities for improvement through genetic manipulation. But the growing demand for soybean transgenics with increased production and improved quality has been handicapped due to inefficient transformation strategies and hence an efficient, stable and reliable transformation system is of prime requisite. In the present study, Agrobacterium-mediated transformation was standardized by refining the glufosinate selection system in terms of dosage (0-6 mg l-1) and degree of exposure. The cotyledonary node explants (with and without wounding) initially cultured on a non-selective shoot induction medium for 10 days before transferring them to the selective SIM with an optimized concentration of 5.0 mg l-1 ammonium glufosinate, showed least selection escape frequency. Wounded cotyledonary node explants infected with Agrobacterium tumefaciens harboring pBIN-bar construct, showed an improved regeneration efficiency of 55.10% and transformation efficiency of 12.6% using Southern blotting in T1 plants. Southern analysis of T1 plants confirmed the integration of bar gene into the genomic DNA and the bar positive T1 plants segregated in 3 : 1 ratio. This is the first report, to our knowledge, of a high transformation efficiency using Agrobacterium-mediated cot node-glufosinate system in an Indian soybean genotype.

9.
Appl Biochem Biotechnol ; 177(3): 689-99, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26239443

ABSTRACT

Phosphorus is an essential nutrient required for soybean growth but is bound in phytic acid which causes negative effects on both the environment as well as the animal nutrition. Lowering of phytic acid levels is associated with reduced agronomic characteristics, and relatively little information is available on the response of soybean plants to phosphorus (P) starvation. In this study, we evaluated the effects of different P starvation concentrations on the phytic acid content, growth, and yield of seven mutant genotypes along with the unirradiated control, JS-335, in a hydroponics growth system. The low phytic acid containing mutant genotypes, IR-JS-101, IR-DS-118, and IR-V-101, showed a relatively high growth rate in low P concentration containing nutrient solution (2 µM), whereas the high P concentration (50 µM) favored the growth of IR-DS-111 and IR-DS-115 mutant genotypes containing moderate phytate levels. The mutant genotypes with high phytic acid content, IR-DS-122, IR-DS-114, and JS-335, responded well under P starvation and did not have any significant effect on the growth and yield of plants. Moreover, the reduction of P concentration in nutrient solution from 50 to 2 µM also reduced the phytic acid content in the seeds of all the soybean genotypes under study. The desirable agronomic performance of low phytic acid containing mutant genotype IR-DS-118 reported in this study suggested it to be a P-efficient genotype which could be considered for agricultural practices under P limiting soils.


Subject(s)
Genotype , Glycine max/growth & development , Glycine max/metabolism , Hydroponics , Phosphorus/pharmacology , Phytic Acid/metabolism , Dose-Response Relationship, Drug , Mutation , Seeds/drug effects , Seeds/metabolism , Glycine max/drug effects , Glycine max/genetics
10.
Indian J Biochem Biophys ; 50(6): 537-47, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24772979

ABSTRACT

Phytic acid, the major storage form of phosphorus in plant seeds is degraded by the phytases to yield inositol and free phosphate, contributing thereby to the improved bioavailability of phytate phosphorus and essential minerals in plant foods and simultaneous reduction in phosphorus pollution of the terrestrial and aquatic ecosystems. As a possible strategy for altering seed phytate levels, the approach involving reduction of phytate content by ectopically expressing endogenous phytase gene during seed development of soybean (Glycine max L. cv. Pusa-20) was attempted in the present study. Semi-quantitative RT-PCR revealed the maximum expression of phytase gene transcripts in germinating cotyledons (approximately 10 days after germinations), compared to other vegetative tissues. A full-length phytase cDNA was amplified from the germinating seedlings by splicing by overlap extension (SOE)-PCR and its sequence analysis revealed an open-reading-frame of 1644 bp, including an N terminal signal peptide of 28 amino acids. Predicted amino acid sequence (547-aa) of molecular mass 62 kDa on alignment with related purple acid phosphatases in other plants shared five conserved domains and seven invariant amino acids involved in coordination of the metals in the binuclear center of purple acid phosphatases. Owing to a large number of E. coli low-usage codons in soybean phytase gene, the modified gene was cloned into a prokaryotic expression vector pET-28a (+) and its expression in E. coli was confirmed by SDS-PAGE and Western blot analysis. Bioassay of the crude expression product in E. coli revealed a functional phytase gene, showing a great potential for developing low phytate transgenic soybean through its seed-specific overexpression in the early stages of seed development.


Subject(s)
6-Phytase/genetics , Codon/genetics , Escherichia coli/genetics , Genetic Engineering/methods , Glycine max/enzymology , Glycine max/genetics , 6-Phytase/biosynthesis , 6-Phytase/chemistry , Amino Acid Sequence , Cloning, Molecular , DNA, Complementary/genetics , Gene Expression , Gene Expression Regulation, Plant , Minerals/metabolism , Molecular Sequence Data , Organ Specificity , Phosphorus/metabolism , Phylogeny , Seedlings/genetics , Sequence Homology , Glycine max/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...