Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
J Med Chem ; 66(20): 13918-13945, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37816126

ABSTRACT

A series of 25 chiral anti-cancer lipidic alkynylcarbinols (LACs) were devised by introducing an (hetero)aromatic ring between the aliphatic chain and the dialkynylcarbinol warhead. The resulting phenyl-dialkynylcarbinols (PACs) exhibit enhanced stability, while retaining cytotoxicity against HCT116 and U2OS cell lines with IC50 down to 40 nM for resolved eutomers. A clickable probe was used to confirm the PAC prodrug behavior: upon enantiospecific bio-oxidation of the carbinol by the HSD17B11 short-chain dehydrogenase/reductase (SDR), the resulting ynones covalently modify cellular proteins, leading to endoplasmic reticulum stress, ubiquitin-proteasome system inhibition, and apoptosis. Insights into the design of LAC prodrugs specifically bioactivated by HSD17B11 vs its paralogue HSD17B13 were obtained. The HSD17B11/HSD17B13-dependent cytotoxicity of PACs was exploited to develop a cellular assay to identify specific inhibitors of these enzymes. A docking study was performed with the HSD17B11 AlphaFold model, providing a molecular basis of the SDR substrates mimicry by PACs. The safety profile of a representative PAC was established in mice.


Subject(s)
Alkynes , Antineoplastic Agents , Mice , Animals , Alkynes/pharmacology , Alkynes/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Acetylene , Molecular Structure , Lipids/chemistry , Cell Line, Tumor
2.
Eur J Immunol ; 53(10): e2350437, 2023 10.
Article in English | MEDLINE | ID: mdl-37438976

ABSTRACT

Toll-like receptor 7 (TLR7) triggers antiviral immune responses through its capacity to recognize single-stranded RNA. TLR7 loss-of-function mutants are associated with life-threatening pneumonia in severe COVID-19 patients. Whereas TLR7-driven innate induction of type I IFN appears central to control SARS-CoV2 virus spreading during the first days of infection, the impact of TLR7-deficiency on adaptive B-cell immunity is less clear. In the present study, we examined the role of TLR7 in the adaptive B cells response to various pathogen-like antigens (PLAs). We used inactivated SARS-CoV2 and a PLA-based COVID-19 vaccine candidate designed to mimic SARS-CoV2 with encapsulated bacterial ssRNA as TLR7 ligands and conjugated with the RBD of the SARS-CoV2 Spike protein. Upon repeated immunization with inactivated SARS-CoV2 or PLA COVID-19 vaccine, we show that Tlr7-deficiency abolished the germinal center (GC)-dependent production of RBD-specific class-switched IgG2b and IgG2c, and neutralizing antibodies to SARS-CoV2. We also provide evidence for a non-redundant role for B-cell-intrinsic TLR7 in the promotion of RBD-specific IgG2b/IgG2c and memory B cells. Together, these data demonstrate that the GC reaction and class-switch recombination to the Myd88-dependent IgG2b/IgG2c in response to SARS-CoV2 or PLAs is strictly dependent on cell-intrinsic activation of TLR7 in B cells.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19 Vaccines , Antibodies, Neutralizing/metabolism , Toll-Like Receptor 7 , RNA, Viral , Immunoglobulin G , Polyesters , Antibodies, Viral
3.
Biol Methods Protoc ; 7(1): bpac026, 2022.
Article in English | MEDLINE | ID: mdl-36457547

ABSTRACT

The haemagglutination test (HAT)-field protocol described here is an optimization of the recently published HAT, for the detection of antibodies directed against the receptor binding domain (RBD) of the SARS-Cov-2 virus. HAT and HAT-field are both based on haemagglutination triggered by a single reagent, the IH4-RBD recombinant protein. A sample of IH4-RBD sufficient for several thousand tests or a plasmid encoding IH4-RBD can be obtained from the authors of our first paper. Using titration of IH4-RBD, HAT-field now allows a quantitative assessment of antibody levels in a single step, using a few microliters of whole blood, such as can be obtained by finger prick, and requires only very simple disposable equipment. Because it is based on a single soluble reagent, the test can be adapted very simply and rapidly to detect antibodies against variants of the SARS-CoV-2, or conceivably against different pathogens. HAT-field appears well suited to provide quantitative assessments of the serological protection of populations as well as individuals, and given its very low cost, the stability of the IH4-RBD reagent in the adapted buffer and the simplicity of the procedure, could be deployed pretty much anywhere, including in the poorest countries and the most remote corners of the globe.

4.
Viruses ; 14(6)2022 05 28.
Article in English | MEDLINE | ID: mdl-35746652

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for COVID-19 in people, has been detected in companion animals on rare occasions. A limited number of large-scale studies have investigated the exposure of companion animals to SARS-CoV-2. The objective of this prospective study was to estimate seroprevalence in privately owned dogs and cats presented in veterinary clinics in different French regions and to test the hypothesis that the occurrence of an episode of COVID-19 in the household and close contact with the owner would increase the chances of the animals being seropositive. One hundred and sixty-five dogs and 143 cats were blood-sampled between March 2020 and December 2021. Neutralizing SARS-CoV-2 antibodies were detected in 8.4% of cats (12/143) and 5.4% of dogs (9/165). Seven animals (three dogs and four cats) were seropositive in the absence of an episode of COVID-19 in the household. Despite not being statistically significant (chi-square test, p-value = 0.55), our data may suggest that the occurrence of an episode of COVID-19 in the household could increase the risk of animal seropositivity (odds ratio = 1.38; 95% confidence interval = 0.55-3.77). This survey indirectly shows that SARS-CoV-2 circulates in canine and feline populations, but its circulation appears to be too low for pets to act as a significant viral reservoir.


Subject(s)
COVID-19 , Cat Diseases , Dog Diseases , Animals , COVID-19/epidemiology , COVID-19/veterinary , Cat Diseases/epidemiology , Cats , Dog Diseases/epidemiology , Dogs , Factor Analysis, Statistical , Humans , Prospective Studies , SARS-CoV-2 , Seroepidemiologic Studies
5.
Elife ; 112022 05 10.
Article in English | MEDLINE | ID: mdl-35535493

ABSTRACT

Hundreds of cytotoxic natural or synthetic lipidic compounds contain chiral alkynylcarbinol motifs, but the mechanism of action of those potential therapeutic agents remains unknown. Using a genetic screen in haploid human cells, we discovered that the enantiospecific cytotoxicity of numerous terminal alkynylcarbinols, including the highly cytotoxic dialkynylcarbinols, involves a bioactivation by HSD17B11, a short-chain dehydrogenase/reductase (SDR) known to oxidize the C-17 carbinol center of androstan-3-alpha,17-beta-diol to the corresponding ketone. A similar oxidation of dialkynylcarbinols generates dialkynylketones, that we characterize as highly protein-reactive electrophiles. We established that, once bioactivated in cells, the dialkynylcarbinols covalently modify several proteins involved in protein-quality control mechanisms, resulting in their lipoxidation on cysteines and lysines through Michael addition. For some proteins, this triggers their association to cellular membranes and results in endoplasmic reticulum stress, unfolded protein response activation, ubiquitin-proteasome system inhibition and cell death by apoptosis. Finally, as a proof-of-concept, we show that generic lipidic alkynylcarbinols can be devised to be bioactivated by other SDRs, including human RDH11 and HPGD/15-PGDH. Given that the SDR superfamily is one of the largest and most ubiquitous, this unique cytotoxic mechanism-of-action could be widely exploited to treat diseases, in particular cancer, through the design of tailored prodrugs.


Subject(s)
Antineoplastic Agents , Short Chain Dehydrogenase-Reductases , Antineoplastic Agents/pharmacology , Endoplasmic Reticulum Stress , Humans , Lipids , Unfolded Protein Response
6.
F1000Res ; 9: 309, 2020.
Article in English | MEDLINE | ID: mdl-34035902

ABSTRACT

This article proposes that one should explore whether the pulmonary complications of Covid-19 can be reduced or avoided by bypassing the airway entry of the SARS-CoV-2 virus. This could possibly be achieved by injecting live SARS-CoV-2 virus intradermal (ID), subcutaneous, intra-muscular (IM) or intra-peritoneal (IP), or by targeting the virus to the digestive tract.  The effectiveness and innocuity of using those various routes could be tested very rapidly in animal models, such as Macaques, Hamsters, Ferrets or Cats. The hope is that these experiments will reveal a route of inoculation that can reliably lead to bona-fide infections, resulting in strong immune responses, with both cellular and serological components, but with much less viral replication in the lungs. This would not only hopefully reduce the incidence of pulmonary complications in the infected subjects, but would also probably reduce the amount of virus released by them via aerosols, and thus reduce the vector of contagiosity that is hardest to control, and that probably leads most effectively to viral replication in the lungs. If those experiments in animal models reveal that one or several routes can be used effectively to reduce pulmonary pathology, a clinical trial could be conducted in human volunteers with very low risk profiles. The ID route should probably be considered as a priority, since it could double-up as a skin test to reveal the immune status of the recipients towards the SARS-CoV-2 virus. The course of action proposed here may possibly provide a way of taking a step ahead of the virus, and if it works as hoped, could help to end the need for confinement within a matter of months, if not weeks.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aerosols , Animals , Cats , Cricetinae , Humans , Incidence , Lung , Models, Animal , SARS-CoV-2
7.
ChemMedChem ; 13(16): 1711-1722, 2018 08 20.
Article in English | MEDLINE | ID: mdl-29924911

ABSTRACT

Extension of a structure-activity relationship study of the antitumor cytotoxicity of lipidic dialkynylcarbinols (DACs) is envisaged by formal methinylogation of one of the ethyndiyl moieties of the DAC warhead into the corresponding allenylalkynylcarbinol (AllAC) counterpart. External AllACs were directly obtained by methinylation of the parent DACs with formaldehyde in either the racemic or scalemic series. Isomers containing external progargyl and propynyl motifs were also prepared. Internal AllACs were obtained as racemic statistical mixtures of stereoisomers in two steps from the key C5 -DAC rac-TIPS-C≡C-CH(OH)-C≡CH and aldehydes. Kinetic resolution of the (S)-C5 -DAC in 97 % ee and (R)-C5 -DAC in 99 % ee was achieved by sequential lipase-mediated acetylation/hydrolysis using the Candida antartica lipase (Novozyme 435). The four internal AllAC stereoisomers were prepared by asymmetric methinylation with (R)- or (S)-diphenylprolinol as chiral auxiliary. Cytotoxicity assays on HCT116 cancer cells showed that the most active (eutomeric) external or internal AllAC exhibits an S configuration, a fatty chain length of n=12, and a 50 % inhibitory concentration IC50 ≈1.0 µm.


Subject(s)
Alcohols/pharmacology , Alkenes/pharmacology , Alkynes/pharmacology , Antineoplastic Agents/pharmacology , Alcohols/chemical synthesis , Alcohols/chemistry , Alkenes/chemical synthesis , Alkenes/chemistry , Alkynes/chemical synthesis , Alkynes/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , HCT116 Cells , Humans , Molecular Structure , Stereoisomerism , Structure-Activity Relationship
8.
ChemMedChem ; 13(11): 1124-1130, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29603643

ABSTRACT

In line with a recent study of the pharmacological potential of bioinspired synthetic acetylenic lipids, after identification of the terminal dialkynylcarbinol (DAC) and butadiynyl alkynylcarbinol (BAC) moieties as functional antitumor pharmacophoric units, this work specifically addresses the issue of carbon backbone length. A systematic variation of the aliphatic chain length was thus carried out in both the DAC and BAC series. The critical impact of the length of the lipidic skeleton was first confirmed in the racemic series, with the highest cytotoxic activity observed for C17 to C18 backbones. Enantiomerically enriched samples were prepared by asymmetric synthesis of the optimal C18 DAC and C17 BAC derivatives. Samples with upgraded enantiomeric purity were alternatively produced by enzymatic kinetic resolution. Eutomers possessing the S configuration displayed cytotoxicity IC50 values as low as 15 nm against HCT116 cancer cells, the highest level of activity reached to date in this series.


Subject(s)
Alkynes/pharmacology , Antineoplastic Agents/pharmacology , Fatty Alcohols/pharmacology , Alkynes/chemical synthesis , Alkynes/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Fatty Alcohols/chemical synthesis , Fatty Alcohols/chemistry , HCT116 Cells , Humans , Molecular Structure , Stereoisomerism
9.
F1000Res ; 6: 763, 2017.
Article in English | MEDLINE | ID: mdl-28663788

ABSTRACT

Background: We wanted to investigate the physical state of biological membranes in live cells under the most physiological conditions possible. Methods: For this we have been using laurdan, C-laurdan or M-laurdan to label a variety of cells, and a biphoton microscope equipped with both a thermostatic chamber and a spectral analyser. We also used a flow cytometer to quantify the 450/530 nm ratio of fluorescence emissions by whole cells. Results: We find that using all the information provided by spectral analysis to perform spectral decomposition dramatically improves the imaging resolution compared to using just two channels, as commonly used to calculate generalized polarisation (GP). Coupled to a new plugin called Fraction Mapper, developed to represent the fraction of light intensity in the first component in a stack of two images, we obtain very clear pictures of both the intra-cellular distribution of the probes, and the polarity of the cellular environments where the lipid probes are localised. Our results lead us to conclude that, in live cells kept at 37°C, laurdan, and M-laurdan to a lesser extent, have a strong tendency to accumulate in the very apolar environment of intra-cytoplasmic lipid droplets, but label the plasma membrane (PM) of mammalian cells ineffectively. On the other hand, C-laurdan labels the PM very quickly and effectively, and does not detectably accumulate in lipid droplets. Conclusions: From using these probes on a variety of mammalian cell lines, as well as on cells from Drosophila and Dictyostelium discoideum, we conclude that, apart from the lipid droplets, which are very apolar, probes in intracellular membranes reveal a relatively polar and hydrated environment, suggesting a very marked dominance of liquid disordered states. PMs, on the other hand, are much more apolar, suggesting a strong dominance of liquid ordered state, which fits with their high sterol contents.

10.
11.
Bioorg Med Chem Lett ; 25(20): 4652-6, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26342865

ABSTRACT

Chiral lipidic dialkynylcarbinols (DACs), recently highlighted as antitumoral pharmacophores, have been conjugated to difluoroboron-dipyrromethene (bodipy), 7-hydroxy-coumarine, and 7-nitro-benzoxadiazole (NBD) fluorophore motifs through triazole clips. The labeled lipids preserve cytotoxic activity against HCT116 cells, and fluorescence microscopy of the stained cells showed clear signals in the intra-cellular membrane system. While the bodipy conjugate also labels lipid droplets very brightly, as expected, the coumarine and NBD probes appear as promising specific tools for the identification of the intra-cellular targets of DACs' cytotoxicity.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Fluorescent Dyes/analysis , Fluorescent Dyes/chemistry , Lipids/chemistry , Methanol/analogs & derivatives , Methanol/chemistry , Methanol/pharmacology , Antineoplastic Agents/analysis , Antineoplastic Agents/chemical synthesis , Boron Compounds/analysis , Boron Compounds/chemical synthesis , Boron Compounds/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Fluorescent Dyes/chemical synthesis , HCT116 Cells , HeLa Cells , Humans , Methanol/analysis , Methanol/chemical synthesis , Microscopy, Fluorescence , Molecular Imaging , Molecular Structure , Structure-Activity Relationship
12.
F1000Res ; 3: 172, 2014.
Article in English | MEDLINE | ID: mdl-25485094

ABSTRACT

Microdomains corresponding to localized partition of lipids between ordered and less ordered environments are the subject of intensive investigations, because of their putative participation in modulating cellular responses. One popular approach in the field consists in labelling membranes with solvatochromic fluorescent probes such as laurdan and C-laurdan. In this report, we describe a high-yield procedure for the synthesis of laurdan, C-laurdan and two new fluorophores, called MoC-laurdan and M-laurdan, as well as their extensive photophysical characterization. We find that the latter probe, M-laurdan, is particularly suited to discriminate lipid phases independently of the chemical nature of the lipids, as measured by both fluorescence Generalized Polarization (GP) and anisotropy in large unilamellar vesicles made of various lipid compositions. In addition, staining of live cells with M-laurdan shows a good stability over time without any apparent toxicity, as well as a wider distribution in the various cell compartments than the other probes.

13.
Front Plant Sci ; 5: 72, 2014.
Article in English | MEDLINE | ID: mdl-24634670

ABSTRACT

To date, it is widely accepted that microdomains do form in the biological membranes of all eukaryotic cells, and quite possibly also in prokaryotes. Those sub-micrometric domains play crucial roles in signaling, in intracellular transport, and even in inter-cellular communications. Despite their ubiquitous distribution, and the broad and lasting interest invested in those microdomains, their actual nature and composition, and even the physical rules that regiment their assembly still remain elusive and hotly debated. One of the most often considered models is the raft hypothesis, i.e., the partition of lipids between liquid disordered and ordered phases (Ld and Lo, respectively), the latter being enriched in sphingolipids and cholesterol. Although it is experimentally possible to obtain the formation of microdomains in synthetic membranes through Ld/Lo phase separation, there is an ever increasing amount of evidence, obtained with a wide array of experimental approaches, that a partition between domains in Ld and Lo phases cannot account for many of the observations collected in real cells. In particular, it is now commonly perceived that the plasma membrane of cells is mostly in Lo phase and recent data support the existence of gel or solid ordered domains in a whole variety of live cells under physiological conditions. Here, we present a model whereby seeds comprised of oligomerised proteins and/or lipids would serve as crystal nucleation centers for the formation of diverse gel/crystalline nanodomains. This could confer the selectivity necessary for the formation of multiple types of membrane domains, as well as the stability required to match the time frames of cellular events, such as intra- or inter-cellular transport or assembly of signaling platforms. Testing of this model will, however, require the development of new methods allowing the clear-cut discrimination between Lo and solid nanoscopic phases in live cells.

14.
F1000Res ; 2: 204, 2013.
Article in English | MEDLINE | ID: mdl-24555100

ABSTRACT

Rett syndrome is a neurological disorder caused by mutations in the MECP2 gene.  MeCP2 transcripts are alternatively spliced to generate two protein isoforms (MeCP2_e1 and MeCP2_e2) that differ at their N-termini. Whilst mRNAs for both forms are expressed ubiquitously, the one for MeCP2_e1 is more abundant than for MeCP2_e2 in the central nervous system. In transfected cells, both protein isoforms are nuclear and colocalize with densely methylated heterochromatic foci. With a view to understanding the physiological contribution of each isoform, and their respective roles in the pathogenesis of Rett syndrome, we set out to generate isoform-specific anti-MeCP2 antibodies. To this end, we immunized rabbits against the peptides corresponding to the short amino-terminal portions that are different between the two isoforms. The polyclonal antibodies thus obtained specifically detected their respective isoforms of MeCP2 in Neuro2a (N2A) cells transfected to express either form. Both antisera showed comparable sensitivities when used for Western blot or immunofluorescence, and were highly specific for their respective isoform. When those antibodies were used on mouse tissues, specific signals were easily detected for Mecp2_e1, whilst Mecp2_e2 was very difficult to detect by Western blot, and even more so by immunofluorescence. Our results thus suggest that brain cells express low amounts of the Mecp2-e2 isoform. Our findings are compatible with recent reports showing that MeCP2_e2 is dispensable for healthy brain function, and that it may be involved in the regulation of neuronal apoptosis and embryonic development.

15.
Biol Direct ; 6: 62, 2011 Dec 09.
Article in English | MEDLINE | ID: mdl-22152499

ABSTRACT

BACKGROUND: Speciation corresponds to the progressive establishment of reproductive barriers between groups of individuals derived from an ancestral stock. Since Darwin did not believe that reproductive barriers could be selected for, he proposed that most events of speciation would occur through a process of separation and divergence, and this point of view is still shared by most evolutionary biologists today. RESULTS: I do, however, contend that, if so much speciation occurs, the most likely explanation is that there must be conditions where reproductive barriers can be directly selected for. In other words, situations where it is advantageous for individuals to reproduce preferentially within a small group and reduce their breeding with the rest of the ancestral population. This leads me to propose a model whereby new species arise not by populations splitting into separate branches, but by small inbreeding groups "budding" from an ancestral stock. This would be driven by several advantages of inbreeding, and mainly by advantageous recessive phenotypes, which could only be retained in the context of inbreeding. Reproductive barriers would thus not arise as secondary consequences of divergent evolution in populations isolated from one another, but under the direct selective pressure of ancestral stocks. Many documented cases of speciation in natural populations appear to fit the model proposed, with more speciation occurring in populations with high inbreeding coefficients, and many recessive characters identified as central to the phenomenon of speciation, with these recessive mutations expected to be surrounded by patterns of limited genomic diversity. CONCLUSIONS: Whilst adaptive evolution would correspond to gains of function that would, most of the time, be dominant, this type of speciation by budding would thus be driven by mutations resulting in the advantageous loss of certain functions since recessive mutations very often correspond to the inactivation of a gene. A very important further advantage of inbreeding is that it reduces the accumulation of recessive mutations in genomes. A consequence of the model proposed is that the existence of species would correspond to a metastable equilibrium between inbreeding and outbreeding, with excessive inbreeding promoting speciation, and excessive outbreeding resulting in irreversible accumulation of recessive mutations that could ultimately only lead to extinction.


Subject(s)
Genetic Speciation , Inbreeding , Mutation , Alleles , Animals , Chromosomes, Human/genetics , Crosses, Genetic , Evolution, Molecular , Genetic Load , Homozygote , Humans , Models, Genetic , Phenotype , Recombination, Genetic , Reproductive Isolation , Translocation, Genetic
16.
J Biol Chem ; 286(39): 34426-39, 2011 Sep 30.
Article in English | MEDLINE | ID: mdl-21828046

ABSTRACT

During the orchestrated process leading to mature erythrocytes, reticulocytes must synthesize large amounts of hemoglobin, while eliminating numerous cellular components. Exosomes are small secreted vesicles that play an important role in this process of specific elimination. To understand the mechanisms of proteolipidic sorting leading to their biogenesis, we have explored changes in the composition of exosomes released by reticulocytes during their differentiation, in parallel to their physical properties. By combining proteomic and lipidomic approaches, we found dramatic alterations in the composition of the exosomes retrieved over the course of a 7-day in vitro differentiation protocol. Our data support a previously proposed model, whereby in reticulocytes the biogenesis of exosomes involves several distinct mechanisms for the preferential recruitment of particular proteins and lipids and suggest that the respective prominence of those pathways changes over the course of the differentiation process.


Subject(s)
Cell Differentiation/physiology , Endosomes/metabolism , Membrane Lipids/biosynthesis , Membrane Proteins/biosynthesis , Reticulocytes/metabolism , Animals , Hemoglobins/biosynthesis , Male , Proteomics/methods , Rats , Rats, Sprague-Dawley , Reticulocytes/cytology
17.
Talanta ; 84(1): 235-9, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21315925

ABSTRACT

We describe a novel, cost effective and simple technique for the manufacture of high sensitivity absorption cells for microfluidic analytical systems. The cells are made from tinted polymethyl methacrylate (PMMA) in which microfluidic channels are fabricated. Two windows (typically 250 µm thick, resulting in little optical power loss) are formed at either end of the channel through which light is coupled. Unwanted stray light from the emitter passes through a greater thickness of the tinted substrate (typically the length of the cell) and is preferentially absorbed. In effect, this creates a pin-hole configuration over the length of the absorption cell, providing improved performances (sensitivity, S/N ratios, baseline noise and limit of detection) when used as an absorption cell compared to clear substrates. The method is used to achieve a LOD of 20 nM with a colourimetric iron assay and a LOD of 0.22 milli-absorption units with a pH assay.


Subject(s)
Limit of Detection , Microfluidic Analytical Techniques/methods , Polymethyl Methacrylate/chemistry , Absorption , Iron/analysis , Iron/chemistry , Microfluidic Analytical Techniques/economics , Microfluidic Analytical Techniques/instrumentation
18.
Biotechniques ; 49(4): 727-8, 730, 732 passim, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20964633

ABSTRACT

Although epitope tags are useful to detect intracellular proteins and follow their localization with antibodies, background and nonspecific staining often remain problematic. We describe a simple assay based on the split GFP complementation system. Proteins tagged with the 15-amino acid GFP 11 fragment are detected with a solution of the recombinant nonfluorescent complementary GFP 1-10 fragment to reconstitute a fluorescent GFP. In contrast to antibody-based staining methods, this one-step assay presents high specificity and very low background of fluorescence, thus conferring higher signal-to-noise ratios. We demonstrate that this new application of the split GFP tagging system facilitates detection of proteins displaying various subcellular localizations using flow cytometry and microscopy analysis.


Subject(s)
Green Fluorescent Proteins/chemistry , Intracellular Space/chemistry , Recombinant Fusion Proteins/chemistry , Animals , Cell Line, Tumor , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Intracellular Space/metabolism , Mice , Microscopy, Fluorescence , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
19.
PLoS One ; 5(6): e11398, 2010 Jun 30.
Article in English | MEDLINE | ID: mdl-20613979

ABSTRACT

During chronic inflammation, immune effectors progressively organize themselves into a functional tertiary lymphoid tissue (TLT) within the targeted organ. TLT has been observed in a wide range of chronic inflammatory conditions but its pathophysiological significance remains unknown. We used the rat aortic interposition model in which a TLT has been evidenced in the adventitia of chronically rejected allografts one month after transplantation. The immune responses elicited in adventitial TLT and those taking place in spleen and draining lymph nodes (LN) were compared in terms of antibody production, T cell activation and repertoire perturbations. The anti-MHC humoral response was more intense and more diverse in TLT. This difference was associated with an increased percentage of activated CD4+ T cells and a symmetric reduction of regulatory T cell subsets. Moreover, TCR repertoire perturbations in TLT were not only increased and different from the common pattern observed in spleen and LN but also "stochastic," since each recipient displayed a specific pattern. We propose that the abnormal activation of CD4+ T cells promotes the development of an exaggerated pathogenic immune humoral response in TLT. Preliminary findings suggest that this phenomenon i) is due to a defective immune regulation in this non-professional inflammatory-induced lymphoid tissue, and ii) also occurs in human chronically rejected grafts.


Subject(s)
Lymphoid Tissue/immunology , Animals , Antibody Formation , Aorta/transplantation , CD4-Positive T-Lymphocytes/immunology , Inflammation/immunology , Lymphocyte Activation , Male , Rats
20.
J Biomed Biotechnol ; 2010: 907371, 2010.
Article in English | MEDLINE | ID: mdl-20368790

ABSTRACT

CD8(+) T cells have been shown to capture plasma membrane fragments from target cells expressing their cognate antigen, a process termed "trogocytosis". Here, we report that human CD4, the Human Immunodeficiency Virus (HIV) receptor, can be found among the proteins transferred by trogocytosis. CD4 is expressed in a correct orientation after its capture by CD8(+) T cells as shown by its detection using conformational antibodies and its ability to allow HIV binding on recipient CD8(+) T cells. Although we could not find direct evidence for infection of CD8(+) T cells having captured CD4 by HIV, CD4 was virologically functional on these cells as it conferred on them the ability to undergo syncytia formation induced by HIV-infected MOLT-4 cells. Our results show that acquisition of CD4 by CD8(+) T cells via trogocytosis could play a previously unappreciated role for CD8(+) T cells in HIV spreading possibly without leading to their infection.


Subject(s)
CD4 Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , HIV Infections/immunology , HIV Infections/virology , HIV/physiology , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Cell Line , Flow Cytometry , Giant Cells/virology , HIV/immunology , HLA-A2 Antigen/immunology , Humans , Immunological Synapses , Mice , Virion/metabolism , Virus Attachment
SELECTION OF CITATIONS
SEARCH DETAIL
...