Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 202(10): 2945-2956, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30988115

ABSTRACT

Imprime PGG (Imprime) is an i.v. administered, yeast ß-1,3/1,6 glucan in clinical development with checkpoint inhibitors. Imprime-mediated innate immune activation requires immune complex formation with naturally occurring IgG anti-ß glucan Abs (ABA). We administered Imprime to healthy human volunteers to assess the necessity of ABA for Imprime-mediated immunopharmacodynamic (IPD) changes. Imprime (4 mg/kg) was administered i.v. in single and multiple infusions. Subsets of subjects were premedicated with antihistamine and corticosteroid. Peripheral blood was measured before, during and after Imprime administration for IPD changes (e.g., ABA, circulating immune complexes, complement activation, complete blood counts, cytokine/chemokine, and gene expression changes). IPD changes were analyzed based on pretreatment serum ABA levels: low-ABA (<20 µg/ml), mid-ABA (≥20-50 µg/ml), and high-ABA (≥50 µg/ml). At the end of infusion, free serum ABA levels decreased, circulating immune complex levels increased, and complement activation was observed. At ∼1-4 h after end of infusion, increased expression of cytokines/chemokines, a 1.5-4-fold increase in neutrophil and monocyte counts and a broad activation of innate immune genes were observed. Low-ABA subjects typically showed minimal IPD changes except when ABA levels rose above 20 µg/ml after repeated Imprime dosing. Mild-to-moderate infusion-related reactions occurred in subjects with ABA ≥20 µg/ml. Premedications alleviated some of the infusion-related reactions, but also inhibited cytokine responses. In conclusion, ABA levels, being critical for Imprime-mediated immune activation may provide a plausible, mechanism-based biomarker to identify patients most likely to respond to Imprime-based anticancer immunotherapy.


Subject(s)
Adjuvants, Immunologic , Fungal Polysaccharides , Immunotherapy , Neoplasms , Saccharomyces cerevisiae/chemistry , beta-Glucans , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacokinetics , Antibodies, Fungal/blood , Antibodies, Fungal/immunology , Chemokines/blood , Chemokines/immunology , Female , Fungal Polysaccharides/administration & dosage , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacokinetics , Humans , Male , Neoplasms/blood , Neoplasms/immunology , Neoplasms/therapy , beta-Glucans/administration & dosage , beta-Glucans/chemistry , beta-Glucans/pharmacokinetics
2.
PLoS One ; 11(11): e0165909, 2016.
Article in English | MEDLINE | ID: mdl-27812183

ABSTRACT

Imprime PGG (Imprime), an intravenously-administered, soluble ß-glucan, has shown compelling efficacy in multiple phase 2 clinical trials with tumor targeting or anti-angiogenic antibodies. Mechanistically, Imprime acts as pathogen-associated molecular pattern (PAMP) directly activating innate immune effector cells, triggering a coordinated anti-cancer immune response. Herein, using whole blood from healthy human subjects, we show that Imprime-induced anti-cancer functionality is dependent on immune complex formation with naturally-occurring, anti-ß glucan antibodies (ABA). The formation of Imprime-ABA complexes activates complement, primarily via the classical complement pathway, and is opsonized by iC3b. Immune complex binding depends upon Complement Receptor 3 and Fcg Receptor IIa, eliciting phenotypic activation of, and enhanced chemokine production by, neutrophils and monocytes, enabling these effector cells to kill antibody-opsonized tumor cells via the generation of reactive oxygen species and antibody-dependent cellular phagocytosis. Importantly, these innate immune cell changes were not evident in subjects with low ABA levels but could be rescued with exogenous ABA supplementation. Together, these data indicate that pre-existing ABA are essential for Imprime-mediated anti-cancer immune activation and suggest that pre-treatment ABA levels may provide a plausible patient selection biomarker to delineate patients most likely to benefit from Imprime-based therapy.


Subject(s)
Antigen-Antibody Complex/metabolism , Antineoplastic Agents/pharmacology , beta-Glucans/pharmacology , Antigen-Antibody Complex/immunology , Antineoplastic Agents/chemistry , HEK293 Cells , Humans , Immunity, Innate/drug effects , Macrophage-1 Antigen/metabolism , Receptors, IgG/metabolism , beta-Glucans/chemistry , beta-Glucans/immunology
3.
Front Immunol ; 4: 230, 2013.
Article in English | MEDLINE | ID: mdl-23964276

ABSTRACT

The immunomodulatory properties of yeast ß-1,3/1,6 glucans are mediated through their ability to be recognized by human innate immune cells. While several studies have investigated binding of opsonized and unopsonized particulate ß-glucans to human immune cells mainly via complement receptor 3 (CR3) or Dectin-1, few have focused on understanding the binding characteristics of soluble ß-glucans. Using a well-characterized, pharmaceutical-grade, soluble yeast ß-glucan, this study evaluated and characterized the binding of soluble ß-glucan to human neutrophils and monocytes. The results demonstrated that soluble ß-glucan bound to both human neutrophils and monocytes in a concentration-dependent and receptor-specific manner. Antibodies blocking the CD11b and CD18 chains of CR3 significantly inhibited binding to both cell types, establishing CR3 as the key receptor recognizing the soluble ß-glucan in these cells. Binding of soluble ß-glucan to human neutrophils and monocytes required serum and was also dependent on incubation time and temperature, strongly suggesting that binding was complement-mediated. Indeed, binding was reduced in heat-inactivated serum, or in serum treated with methylamine or in serum reacted with the C3-specific inhibitor compstatin. Opsonization of soluble ß-glucan was demonstrated by detection of iC3b, the complement opsonin on ß-glucan-bound cells, as well as by the direct binding of iC3b to ß-glucan in the absence of cells. Binding of ß-glucan to cells was partially inhibited by blockade of the alternative pathway of complement, suggesting that the C3 activation amplification step mediated by this pathway also contributed to binding.

SELECTION OF CITATIONS
SEARCH DETAIL
...