Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 169
Filter
1.
Evolution ; 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39276078

ABSTRACT

Spider silk is amongst the toughest materials produced by living systems, but its tensile performance varies considerably between species. Despite the extensive sampling of the material properties and composition of dragline silk, the understanding why some silks perform better than others is still limited. Here, I adopted a phylogenetic comparative approach to re-analyse structural and mechanical data from the Silkome database and the literature across 164 species to (a) provide an extended model of silk property evolution, (b) test for correlations between structural and mechanical properties, and (c) to test if silk tensile performance differs between web-building and non-web-building species. Unlike the common notion that orb-weavers have evolved the best performing silks, outstanding tensile properties were found both in and outside the araneoid clade. Phylogenetic linear models indicated that the mechanical and structural properties of spider draglines poorly correlate, but silk strength and toughness correlated better with birefringence (an indicator of the material anisotropy) than crystallinity. Furthermore, in contrast to previous ideas, silk tensile performance did not differ between ecological guilds. These findings indicate multiple unknown pathways towards the evolution of spider silk tensile super-performance, calling for a better integration of non-orb-weaving spiders in spider silk studies.

2.
Am Nat ; 204(2): 191-199, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39008836

ABSTRACT

AbstractThe sub-Antarctic terrestrial ecosystems survive on isolated oceanic islands in the path of circumpolar currents and winds that have raged for more than 30 million years and are shaped by climatic cycles that surpass the tolerance limits of many species. Surprisingly little is known about how these ecosystems assembled their native terrestrial fauna and how such processes have changed over time. Here, we demonstrate the patterns and timing of colonization and speciation in the largest and dominant arthropod predators in the eastern sub-Antarctic: spiders of the genus Myro. Our results indicate that this lineage originated from Australia before the Plio-Pleistocenic glacial cycles and underwent an adaptive radiation on the Crozet archipelago, from where one native species colonized multiple remote archipelagos via the Antarctic circumpolar current across thousands of kilometers. The results indicate limited natural connectivity between terrestrial macroinvertebrate faunas in the eastern sub-Antarctic and partial survival of repeated glaciations in the Plio-Pleistocene. Furthermore, our findings highlight that by integrating arthropod taxa from multiple continents, the climatically more stable volcanic Crozet archipelago played a critical role in the evolution and distribution of arthropod life in the sub-Antarctic.


Subject(s)
Animal Distribution , Biological Evolution , Spiders , Animals , Antarctic Regions , Spiders/physiology , Ecosystem , Predatory Behavior , Phylogeny , Arthropods/physiology
3.
Curr Biol ; 34(14): R675-R677, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39043137

ABSTRACT

Many invertebrates possess more than two pairs of eyes - but does eye redundancy aid in ecological diversification? A new study finds varied size adaptation of different eye pairs in spiders, demonstrating how developmental modularity of multi-eyed systems effectively balances selective pressures.


Subject(s)
Biological Evolution , Eye , Spiders , Animals , Spiders/physiology , Eye/anatomy & histology , Adaptation, Physiological , Vision, Ocular/physiology
4.
Interface Focus ; 14(3): 20230071, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39081622

ABSTRACT

Spider silk is a tough and versatile biological material combining high tensile strength and extensibility through nanocomposite structure and its nonlinear elastic behaviour. Notably, spiders rarely use single silk fibres in isolation, but instead process them into more complex composites, such as silk fibre bundles, sheets and anchorages, involving a combination of spinneret, leg and body movements. While the material properties of single silk fibres have been extensively studied, the mechanical properties of silk composites and meta-structures are poorly understood and exhibit a hereto largely untapped potential for the bio-inspired design of novel fabrics with outstanding mechanical properties. In this study, we report on the tensile mechanics of the adhesive capture threads of the Southern house spider (Kukulcania hibernalis), which exhibit extreme extensibility, surpassing that of the viscid capture threads of orb weavers by up to tenfold. By combining high-resolution mechanical testing, microscopy and in silico experiments based on a hierarchical modified version of the Fibre Bundle Model, we demonstrate that extreme extensibility is based on a hierarchical loops-on-loops structure combining linear and coiled elements. The stepwise unravelling of the loops leads to the repeated fracture of the connected linear fibres, delaying terminal failure and enhancing energy absorption. This principle could be used to achieve tailored fabrics and materials that are able to sustain high deformation without failure.

5.
J R Soc Interface ; 21(216): 20240123, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39081115

ABSTRACT

Spider webs that serve as snares are one of the most fascinating and abundant type of animal architectures. In many cases they include an adhesive coating of silk lines-so-called viscid silk-for prey capture. The evolutionary switch from silk secretions forming solid fibres to soft aqueous adhesives remains an open question in the understanding of spider silk evolution. Here we functionally and chemically characterized the secretions of two types of silk glands and their behavioural use in the cellar spider, Pholcus phalangioides. Both being derived from the same ancestral gland type that produces fibres with a solidifying glue coat, the two types produce respectively a quickly solidifying glue applied in thread anchorages and prey wraps, or a permanently tacky glue deployed in snares. We found that the latter is characterized by a high concentration of organic salts and reduced spidroin content, showing up a possible pathway for the evolution of viscid properties by hygroscopic-salt-mediated hydration of solidifying adhesives. Understanding the underlying molecular basis for such radical switches in material properties not only helps to better understand the evolutionary origins and versatility of ecologically impactful spider web architectures, but also informs the bioengineering of spider silk-based products with tailored properties.


Subject(s)
Silk , Spiders , Spiders/chemistry , Animals , Silk/chemistry , Adhesives/chemistry , Biological Evolution , Predatory Behavior
6.
Front Cell Neurosci ; 18: 1354520, 2024.
Article in English | MEDLINE | ID: mdl-38846638

ABSTRACT

The lateral superior olive (LSO), a prominent integration center in the auditory brainstem, contains a remarkably heterogeneous population of neurons. Ascending neurons, predominantly principal neurons (pLSOs), process interaural level differences for sound localization. Descending neurons (lateral olivocochlear neurons, LOCs) provide feedback into the cochlea and are thought to protect against acoustic overload. The molecular determinants of the neuronal diversity in the LSO are largely unknown. Here, we used patch-seq analysis in mice at postnatal days P10-12 to classify developing LSO neurons according to their functional and molecular profiles. Across the entire sample (n = 86 neurons), genes involved in ATP synthesis were particularly highly expressed, confirming the energy expenditure of auditory neurons. Two clusters were identified, pLSOs and LOCs. They were distinguished by 353 differentially expressed genes (DEGs), most of which were novel for the LSO. Electrophysiological analysis confirmed the transcriptomic clustering. We focused on genes affecting neuronal input-output properties and validated some of them by immunohistochemistry, electrophysiology, and pharmacology. These genes encode proteins such as osteopontin, Kv11.3, and Kvß3 (pLSO-specific), calcitonin-gene-related peptide (LOC-specific), or Kv7.2 and Kv7.3 (no DEGs). We identified 12 "Super DEGs" and 12 genes showing "Cluster similarity." Collectively, we provide fundamental and comprehensive insights into the molecular composition of individual ascending and descending neurons in the juvenile auditory brainstem and how this may relate to their specific functions, including developmental aspects.

7.
Chempluschem ; 89(8): e202400168, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38691830

ABSTRACT

Recently, we suggested liquid and high-boiling TIPS-CC-SF5 (TASP) as a versatile reagent to access so far elusive SF5-containing building blocks by less specialized laboratories under bench-top conditions. The synthesis of non-aromatic SF5 building blocks generally requires on-site fluorination or pentafluorosulfanylation steps employing toxic and/or gaseous reagents. Herein, we underline the versatility of this reagent by reporting a benign bench-top protocol for the synthesis of Z-configured ß-pentafluorosulfanylated vinyl sulfides in good to excellent yields (up to 99 %) with exclusive (Z)-diasteroselectivity and broad functional group tolerance. This method exploits an in-situ protodesilylation-hydrothiolation sequence. This so far uncharted class of compounds was characterized by means of NMR-spectroscopy as well as SC-XRD. Furthermore, we suggest the reaction to proceed via a kinetically controlled closed-shell reaction pathway, corroborated by in-silico experiments.

8.
PLoS One ; 19(4): e0300122, 2024.
Article in English | MEDLINE | ID: mdl-38578724

ABSTRACT

We introduce the concept photophysical image analysis (PIA) and an associated pipeline for unsupervised probabilistic image thresholding for images recorded by electron-multiplying charge-coupled device (EMCCD) cameras. We base our approach on a closed-form analytic expression for the characteristic function (Fourier-transform of the probability mass function) for the image counts recorded in an EMCCD camera, which takes into account both stochasticity in the arrival of photons at the imaging camera and subsequent noise induced by the detection system of the camera. The only assumption in our method is that the background photon arrival to the imaging system is described by a stationary Poisson process (we make no assumption about the photon statistics for the signal). We estimate the background photon statistics parameter, λbg, from an image which contains both background and signal pixels by use of a novel truncated fit procedure with an automatically determined image count threshold. Prior to this, the camera noise model parameters are estimated using a calibration step. Utilizing the estimates for the camera parameters and λbg, we then introduce a probabilistic thresholding method, where, for the first time, the fraction of misclassified pixels can be determined a priori for a general image in an unsupervised way. We use synthetic images to validate our a priori estimates and to benchmark against the Otsu method, which is a popular unsupervised non-probabilistic image thresholding method (no a priori estimates for the error rates are provided). For completeness, we lastly present a simple heuristic general-purpose segmentation method based on the thresholding results, which we apply to segmentation of synthetic images and experimental images of fluorescent beads and lung cell nuclei. Our publicly available software opens up for fully automated, unsupervised, probabilistic photophysical image analysis.


Subject(s)
Diagnostic Imaging , Electrons , Image Processing, Computer-Assisted/methods , Fourier Analysis
9.
Sci Rep ; 14(1): 8055, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580709

ABSTRACT

Terpenes represent a promising renewable feedstock for the substitution of fossil resources in the synthesis of renewable platform chemicals, like diamines. This work describes the synthesis and full characterization of 1,4-p-menthane diamine (1,4-PMD) obtained from α-terpinene (1). A two-step procedure using dibenzyl azodicarboxylate (DBAD) and H2 as rather benign reagents was employed under comparatively mild conditions. Both C-N bonds were formed simultaneously during a visible-light mediated Diels-Alder reaction, which was investigated in batch or flow, avoiding regioselectivity issues during the amination steps that are otherwise typical for terpene chemistry. Heterogeneously catalyzed quadruple hydrogenation of the cycloadduct (2a) yielded 1,4­PMD (3). While the intermediate cycloadduct was shown to be distillable, the target diamine can be sublimed, offering sustainable purification methods.

10.
Angew Chem Int Ed Engl ; 63(19): e202402885, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38511969

ABSTRACT

We report on the synthesis and characterization of a series of (mostly) air-stable diorganyl bis(pyridylimino) isoindolide (BPI) aluminum complexes and their chemistry upon visible-light excitation. The redox non-innocent BPI pincer ligand allows for efficient charge transfer homolytic processes of the title compounds. This makes them a universal platform for the generation of carbon-centered radicals. The photo-induced homolytic cleavage of the Al-C bonds was investigated by means of stationary and transient UV/Vis spectroscopy, spin trapping experiments, as well as EPR and NMR spectroscopy. The experimental findings were supported by quantum chemical calculations. Reactivity studies enabled the utilization of the aluminum complexes as reactants in tin-free Giese-type reactions and carbonyl alkylations under ambient conditions, which both indicated radical-polar crossover behavior. A deeper understanding of the physical fundamentals and photochemical process was provided, furnishing in turn a new strategy to control the reactivity of bench-stable aluminum organometallics.

11.
Micromachines (Basel) ; 15(2)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38398996

ABSTRACT

Regular device-scale DNA waves for high DNA concentrations and flow velocities have been shown to emerge in quadratic micropillar arrays with potentially strong relevance for a wide range of microfluidic applications. Hexagonal arrays constitute another geometry that is especially relevant for the microfluidic pulsed-field separation of DNA. Here, we report on the differences at the micro and macroscopic scales between the resulting wave patterns for these two regular array geometries and one disordered array geometry. In contrast to the large-scale regular waves visible in the quadratic array, in the hexagonal arrays, waves occur in a device-scale disordered zig-zag pattern with fluctuations on a much smaller scale. We connect the large-scale pattern to the microscopic flow and observe flow synchronization that switches between two directions for both the quadratic and hexagonal arrays. We show the importance of order using the disordered array, where steady-state stationary and highly fluctuating flow states persist in seemingly random locations across the array. We compare the flow dynamics of the arrays to that in a device with sparsely distributed pillars. Here, we observe similar vortex shedding, which is clearly observable in the quadratic and disordered arrays. However, the shedding of these vortices couples only in the flow direction and not laterally as in the dense, ordered arrays. We believe that our findings will contribute to the understanding of elastic flow dynamics in pillar arrays, helping us elucidate the fundamental principles of non-Newtonian fluid flow in complex environments as well as supporting applications in engineering involving e.g., transport, sorting, and mixing of complex fluids.

12.
J Morphol ; 285(2): e21670, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38361256

ABSTRACT

Silk production is a prominent characteristic of spiders. The silk is extruded through spigots located on the spinnerets, which are single- to multimembered paired appendages at the end of the abdomen. Most extant spiders have three pairs of spinnerets, and in between either a cribellum (spinning plate) or a colulus (defunct vestigial organ), dividing these spiders into cribellate and ecribellate species. Previous research has shown that cribellate and ecribellate spiders differ not only in the composition of their spinning apparatus but also in the movements of their spinnerets during silk spinning. The objective of this study was to determine whether the differences in spinneret movements are solely due to variations in spinneret shape or whether they are based on differences in muscular anatomy. This was accomplished by analyzing microcomputed tomography scans of the posterior abdomen of each three cribellate and ecribellate species. It was found that the number of muscles did not generally differ between cribellate and ecribellate species, but varied considerably between the species within each of these two groups. Muscle thickness, particularly of the posterior median spinneret, varied slightly between groups, with cribellate spiders exhibiting more robust muscles, possibly to aid in the combing process during cribellar thread production. Interestingly, the vestigial colulus still possesses muscles, that can be homologized with those of the cribellum. This exploration into spinneret anatomy using microcomputed tomography data reveals that despite being small appendages, the spider spinnerets are equipped with a complex musculature that enables them to perform fine-scaled maneuvers to construct different fiber-based materials.


Subject(s)
Spiders , Animals , Spiders/anatomy & histology , Anatomy, Comparative , X-Ray Microtomography , Silk
13.
Food Chem ; 442: 138492, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38245986

ABSTRACT

In this work, we propose a novel approach for extracting Cu and Ni from vegetable oils (which can be expanded to other metals). The method is based on the transference of the analytes to an aqueous acid phase due to the disruption of a three-component solution. The extraction was carried out in two steps. In the first step, a three-component solution was prepared comprising the sample, 1-octanol, and HNO3 solution. Next, the homogeneous system was disrupted by adding 1.0 mL of deionized water, and two phases were formed. The aqueous extract deposited in the bottom of the flask was collected with a micropipette, and Cu and Ni were determined by graphite furnace atomic absorption spectrometry (GF AAS). The developed method presented limits of quantification (LOQ) of 0.25 and 0.17 ng g-1 for Cu and Ni, respectively, and was successfully applied in the analysis of eleven oil samples from different origins.


Subject(s)
Graphite , Plant Oils , Plant Oils/chemistry , Graphite/chemistry , Spectrophotometry, Atomic/methods , Water/chemistry
14.
Dalton Trans ; 53(7): 2917-2921, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38284266

ABSTRACT

Herein, we present that the radicals [Ph3PC(Me)EMes2]˙ (2Si and 2Ge) can be generated from the α-silylated and α-germylated phosphorus ylides Ph3PC(Me)E(Cl)Mes2 (1Si and 1Ge) through one-electron reduction with Jones' dimer (MesNacNacMg)2 in benzene. Although isolation of the free radicals was not possible, the products of the intramolecular addition of the radicals to a phenyl substituent of the phosphorus moiety, followed by subsequent reaction with 2Si or 2Ge to the isolated species 3Si and 3Ge, respectively, were observed. This transformation witnesses a dearomative 1,4-addition of tetryl radical species to the phenyl scaffold in a stereoselective anti-fashion.

15.
Chemistry ; 30(14): e202304015, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38079230

ABSTRACT

Synthetic access to a variety of aliphatic and vinylic pentafluorosulfanylated building blocks remains a major challenge in contemporary organofluorine chemistry hampering its investigation in the context of medicinal chemistry, agrochemistry and functional materials. Herein, we report a bench-top protocol to access the virtually unknown class of α-SF5 -enamines under mild reaction conditions in good to excellent yields (up to 95 %). This reaction combines the protodesilylation of the commercially available precursor TASP with the in situ hydroamination of HC≡C-SF5 . The on-site use of highly toxic gases or corrosive reagents is avoided, making access to this motif applicable to a wide chemical audience. The excellent E-diastereoselectivity of this two-step cascade reaction is suggested to be the result of the convergence of the fast Z-/E- isomerization of a vinyl anion as well as the isomerization of the iminium ion. The remarkable thermal stability of these SF5 -enamines encourages further studies of their synthetic utility.

16.
Mol Phylogenet Evol ; 192: 107988, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38072140

ABSTRACT

Phylogenetic inference has become a standard technique in integrative taxonomy and systematics, as well as in biogeography and ecology. DNA barcodes are often used for phylogenetic inference, despite being strongly limited due to their low number of informative sites. Also, because current DNA barcodes are based on a fraction of a single, fast-evolving gene, they are highly unsuitable for resolving deeper phylogenetic relationships due to saturation. In recent years, methods that analyse hundreds and thousands of loci at once have improved the resolution of the Tree of Life, but these methods require resources, experience and molecular laboratories that most taxonomists do not have. This paper introduces a PCR-based protocol that produces long amplicons of both slow- and fast-evolving unlinked mitochondrial and nuclear gene regions, which can be sequenced by the affordable and portable ONT MinION platform with low infrastructure or funding requirements. As a proof of concept, we inferred a phylogeny of a sample of 63 spider species from 20 families using our proposed protocol. The results were overall consistent with the results from approaches based on hundreds and thousands of loci, while requiring just a fraction of the cost and labour of such approaches, making our protocol accessible to taxonomists worldwide.


Subject(s)
DNA Barcoding, Taxonomic , DNA , Humans , Phylogeny , Cost-Benefit Analysis , DNA/chemistry , Sequence Analysis, DNA/methods , DNA Barcoding, Taxonomic/methods
17.
RSC Adv ; 13(45): 31497-31506, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37901264

ABSTRACT

Solutions of macromolecules exhibit viscoelastic properties and unlike Newtonian fluids, they may break time-reversal symmetry at low Reynolds numbers resulting in elastic turbulence. Furthermore, under some conditions, instead of the chaotic turbulence, the result is large-scale waves in the form of cyclic spatial and temporal concentration variations, as has been shown for macromolecular DNA flowing in microfluidic pillar arrays. We here demonstrate how altering the symmetry of the individual pillars can be used to influence the symmetry of these waves. We control the extent of instabilities in viscoelastic flow by leveraging the effects of the symmetry of the pillars on the waves, demonstrating suppressed viscoelastic fluctuations with relevance for transport and sorting applications, or conversely opening up for enhanced viscoelasticity-mediated mixing. The onset of waves, which changes flow resistance, occurs at different Deborah numbers for flow in different directions through the array of triangular pillars, thus breaking the symmetry of the flow resistance along the device, opening up for using the occurrence of the waves to construct a fluidic diode.

18.
Proc Biol Sci ; 290(2009): 20232035, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37876190

ABSTRACT

Many animals use self-built structures (extended phenotypes) to enhance body functions, such as thermoregulation, prey capture or defence. Yet, it is unclear whether the evolution of animal constructions supplements or substitutes body functions-with disparate feedbacks on trait evolution. Here, using brown spiders (Araneae: marronoid clade), we explored if the evolutionary loss and gain of silken webs as extended prey capture devices correlates with alterations in traits known to play an important role in predatory strikes-locomotor performance (sprint speed) and leg spination (expression of capture spines on front legs). We found that in this group high locomotor performance, with running speeds of over 100 body lengths per second, evolved repeatedly-both in web-building and cursorial spiders. There was no correlation with running speed, and leg spination only poorly correlated, relative to the use of extended phenotypes, indicating that web use does not reduce selective pressures on body functions involved in prey capture and defence per se. Consequently, extended prey capture devices serve as supplements rather than substitutions to body traits and may only be beneficial in conjunction with certain life-history traits, possibly explaining the rare evolution and repeated loss of trapping strategies in predatory animals.


Subject(s)
Running , Spiders , Animals , Spiders/physiology , Predatory Behavior/physiology , Silk
19.
Nat Commun ; 14(1): 3190, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37268627

ABSTRACT

The development of cryogenic semiconductor electronics and superconducting quantum computing requires composite materials that can provide both thermal conduction and thermal insulation. We demonstrated that at cryogenic temperatures, the thermal conductivity of graphene composites can be both higher and lower than that of the reference pristine epoxy, depending on the graphene filler loading and temperature. There exists a well-defined cross-over temperature-above it, the thermal conductivity of composites increases with the addition of graphene; below it, the thermal conductivity decreases with the addition of graphene. The counter-intuitive trend was explained by the specificity of heat conduction at low temperatures: graphene fillers can serve as, both, the scattering centers for phonons in the matrix material and as the conduits of heat. We offer a physical model that explains the experimental trends by the increasing effect of the thermal boundary resistance at cryogenic temperatures and the anomalous thermal percolation threshold, which becomes temperature dependent. The obtained results suggest the possibility of using graphene composites for, both, removing the heat and thermally insulating components at cryogenic temperatures-a capability important for quantum computing and cryogenically cooled conventional electronics.

20.
Arch Clin Neuropsychol ; 38(8): 1610-1622, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37253664

ABSTRACT

OBJECTIVE: Fatigue in multiple sclerosis (MS) is common, burdensome, and usually assessed by self-report measures. This retrospective data analysis of the twice-daily Alertness test (Test battery of Attentional Performance) examined the extent to which this assessment procedure is associated with MS-related fatigue. METHOD: Two-hundred and thirteen German inpatients (136 women) aged 18-69 years with predominantly relapsing MS (72.8%) were included. Based on reaction time (RT) differences between morning tonic alertness (8:30-11:00 a.m.) and afternoon tonic alertness (3:00-4:30 p.m.), patients were divided into an "improver," "maintainer," or "decliner" group. Multinomial logistic regression (MLR) was calculated to predict the likelihood of belonging to one of these performance groups, taking into account cognitive fatigue (Fatigue Scale of Motor and Cognition, FSMCcog), disease severity (Expanded Disability Status Scale, EDSS), depression (Center for Epidemiologic Studies Depression Scale, CES-D), gender, and tonic alertness (a.m.). RESULTS: The final MLR model (R2 = .30) included tonic alertness (a.m.) (<.001), FSMCcog (.008), EDSS (.038), CES-D (.161), and gender (.057). Using this model, correct assignment to alertness performance groups was 56.8%. Tonic alertness (p.m.) demonstrated the greatest potential for differentiation among the three performance groups (<.001). CONCLUSIONS: These results show a relationship between subjective fatigue and tonic alertness. However, other variables also contribute to this association, suggesting that the RT differences between twice-daily measures of tonic alertness is not related to increased subjective fatigue in a substantial number of pwMS, which diminishes the diagnostic value. Further studies including relevant variables such as sleepiness are urgently needed.


Subject(s)
Multiple Sclerosis , Humans , Female , Multiple Sclerosis/psychology , Self Report , Retrospective Studies , Neuropsychological Tests , Attention
SELECTION OF CITATIONS
SEARCH DETAIL