Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21264328

ABSTRACT

The virus SARS-CoV-2, responsible for the global COVID-19 pandemic, spread rapidly around the world causing high morbidity and mortality because humans have no pre-existing immunity. However, there are four known, endemic seasonal coronaviruses in humans (HCoVs) and whether antibodies for these HCoVs play a role in severity of COVID-19 disease has generated a lot of interest. Of these seasonal viruses NL63 is of particular interest as it uses the same cell entry receptor as SARS-CoV-2.We use functional, neutralising assays to investigate cross reactive antibodies and their relationship with COVID-19 severity. We analysed neutralisation of SARS-CoV-2, NL63, HKU1, and 229E in 38 COVID-19 patients and 62 healthcare workers, and a further 182 samples to specifically study the relationship between SARS-CoV-2 and NL63.We found that although HCoV neutralisation was very common there was little evidence that these antibodies neutralised SARS-CoV-2. Despite no evidence in cross neutralisation, levels of NL63 neutralisating antibodies become elevated after exposure to SARS-CoV-2 through infection or following vaccination.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-456606

ABSTRACT

RaTG13 is a close relative of SARS-CoV-2, the virus responsible for the Coronavirus Disease 2019 (COVID-19) pandemic, sharing 96% sequence similarity at the genome-wide level. The spike receptor binding domain (RBD) of RaTG13 contains a large number of amino acid substitutions when compared to SARS-CoV-2, likely impacting affinity for the ACE2 receptor. Antigenic differences between the viruses are less well understood, especially whether RaTG13 spike can be efficiently neutralised by antibodies generated from infection with, or vaccination against, SARS-CoV-2. Using RaTG13 and SARS-CoV-2 pseudotypes we compared neutralisation using convalescent sera from previously infected patients as well as vaccinated healthcare workers. Surprisingly, our results revealed that RaTG13 was more efficiently neutralised than SARS-CoV-2. In addition, neutralisation assays using spike chimeras and mutants harbouring single amino acid substitutions within the RBD demonstrated that both spike proteins can tolerate multiple changes without dramatically reducing how efficiently they are neutralised. Moreover, introducing the 484K mutation into RaTG13 resulted in increased neutralisation, in contrast to the same mutation in SARS-CoV-2 (E484K). This is despite E484K having a well-documented role in immune evasion in variants of concern (VOC) such as B.1.351 (Beta). These results indicate that the immune-escape mutations found in SARS-CoV-2 VOCs might be driven by strong antibody pressures, and that the future spill-over of RaTG13 and/or related sarbecoviruses could be mitigated using current SARS-CoV-2-based vaccination strategies.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21257729

ABSTRACT

BackgroundThe rise of SARS-CoV-2 variants has made the pursuit to define correlates of protection more troublesome, despite the availability of the World Health Organisation (WHO) International Standard for anti-SARS-CoV-2 Immunoglobulin sera, a key reagent used to standardise laboratory findings into an international unitage. MethodsUsing pseudotyped virus, we examine the capacity of convalescent sera, from a well-defined cohort of healthcare workers (HCW) and Patients infected during the first wave from a national critical care centre in the UK to neutralise B.1.1.298, variants of interest (VOI) B.1.617.1 (Kappa), and four VOCs, B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta), including the B.1.617.2 K417N, informally known as Delta Plus. We utilised the WHO International Standard for anti-SARS-CoV-2 Immunoglobulin to report neutralisation antibody levels in International Units per mL. FindingsOur data demonstrate a significant reduction in the ability of first wave convalescent sera to neutralise the VOCs. Patients and HCWs with more severe COVID-19 were found to have higher antibody titres and to neutralise the VOCs more effectively than individuals with milder symptoms. Using an estimated threshold for 50% protection, 54 IU/mL, we found most asymptomatic and mild cases did not produce titres above this threshold. InterpretationExpressing our data in IU/ml, we provide a benchmark pre-vaccine standardised dataset that compares disease severity with neutralising antibody titres. Our data may now be compared across multiple laboratories. The continued use and aggregation of standardised data will eventually assist in defining correlates of protection. FundingUKRI and NIHR; grant number G107217 Research in contextO_ST_ABSEvidence before this studyC_ST_ABSDuring the first wave outbreak, much focus was placed on the role of neutralising antibodies and titres generated upon infection to ancestral SARS-CoV-2. Due to the large amounts of different assays used to elucidate the antibody-mediated immunity and laboratory to laboratory, large amounts of invaluable data could not be directly compared in order to define a correlate of protection, due to variability in the results. The WHO International Standard for anti-SARS-CoV-2 Immunoglobulin sera was made in order to standardise future data so that comparisons may take place. Added value of this studyOur study compares the neutralisation capacity of sera from patients and healthcare workers (HCWs) from the ancestral strain of SARS-CoV-2 against new variants, including the current variants of concern in circulation. We also provide data in International Units per mL, a standardised unitage, for infected individuals that have a clinical severity score, allowing us to assess levels of neutralising antibodies across different severities of COVID-19 disease. By providing a method to calibrate most of the variants of concern so that the WHO International Standard for anti-SARS-CoV-2 Immunoglobulin reagent could be used to standardise our results, therefore making them comparable to other laboratories who also standardised their data in an identical manner. Implications of all the available evidenceContinual use and accumulation of standardised data would eventually lead to defining the correlates of protection against SARS-CoV-2. This could help to inform medical staff to identify which individuals would be a greater risk of a potential reinfection to SARS-CoV-2.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-21257572

ABSTRACT

Precision monitoring of antibody responses during the COVID-19 pandemic is increasingly important during large scale vaccine rollout and rise in prevalence of Severe Acute Respiratory Syndrome-related Coronavirus-2 (SARS-CoV-2) variants of concern (VOC). Equally important is defining Correlates of Protection (CoP) for SARS-CoV-2 infection and COVID-19 disease. Data from epidemiological studies and vaccine trials identified virus neutralising antibodies (Nab) and SARS-CoV-2 antigen-specific (notably RBD, and S) binding antibodies as candidate CoP. In this study, we used the World Health Organisation (WHO) international standard to benchmark neutralising antibody responses and a large panel of binding antibody assays to compare convalescent sera obtained from: a) COVID-19 patients; b) SARS-CoV-2 seropositive healthcare workers (HCW) and c) seronegative HCW. The ultimate aim of this study, was to identify biomarkers of humoral immunity that could be used as candidate CoP in internationally accepted unitage. Whenever suitable, the antibody levels of the samples studied were expressed in International Units (INU) for virus neutralisation assays or International Binding Antibody Units (BAU) for ELISA tests. In this work we used commercial and non-commercial antibody binding assays; a lateral flow test for detection of SARS-CoV-2-specific IgG / IgM; a high throughput multiplexed particle flow cytometry assay for SARS-CoV-2 Spike (S), Nucleocapsid (N) and Receptor Binding Domain (RBD) proteins); a multiplex antigen semi-automated immuno-blotting assay measuring IgM, IgA and IgG; a pseudotyped microneutralisation test (pMN) and electroporation-dependent neutralisation assay (EDNA). Our results indicate that overall, severe COVID-19 patients showed statistically significantly higher levels of SARS-CoV-2-specific neutralising antibodies (average 1029 IU/ml) than those observed in seropositive HCW with mild or asymptomatic infections (379 IU/ml) and that clinical severity scoring, based on WHO guidelines was tightly correlated with neutralisation and RBD / S binding assays. In addition, there was a positive correlation between severity, N-antibody assays and intracellular virus neutralisation.

SELECTION OF CITATIONS
SEARCH DETAIL
...