Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-471028

ABSTRACT

Lipid-nanoparticle(LNP)-mRNA vaccines offer protection against COVID-19. However, multiple variant lineages caused widespread breakthrough infections. There is no report on variant-specific vaccines to date. Here, we generated LNP-mRNAs specifically encoding wildtype, B.1.351 and B.1.617 SARS-CoV-2 spikes, and systematically studied their immune responses in animal models. All three LNP-mRNAs induced potent antibody responses in mice. However, WT-LNP-mRNA vaccination showed reduced neutralization against B.1.351 and B.1.617; and B.1.617-specific vaccination showed differential neutralization. All three vaccine candidates elicited antigen-specific CD8 and CD4 T cell responses. Single cell transcriptomics of B.1.351-LNP-mRNA and B.1.617-LNP-mRNA vaccinated animals revealed a systematic landscape of immune cell populations and global gene expression. Variant-specific vaccination induced a systemic increase in reactive CD8 T cell population, with a strong signature of transcriptional and translational machineries in lymphocytes. BCR-seq and TCR-seq unveiled repertoire diversity and clonal expansions in vaccinated animals. These data provide direct systems immune profiling of variant-specific LNP-mRNA vaccination in vivo.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-470640

ABSTRACT

T cell receptor (TCR) repertoires are critical for antiviral immunity. Determining the TCR repertoires composition, diversity, and dynamics and how they change during viral infection can inform the molecular specificity of viral infection such as SARS-CoV-2. To determine signatures associated with COVID-19 disease severity, here we performed a large-scale analysis of over 4.7 billion sequences across 2,130 TCR repertoires from COVID-19 patients and healthy donors. TCR repertoire analyses from these data identified and characterized convergent COVID-19 associated CDR3 gene usages, specificity groups, and sequence patterns. T cell clonal expansion was found to be associated with upregulation of T cell effector function, TCR signaling, NF-kB signaling, and Interferon-gamma signaling pathways. Machine learning approaches accurately predicted disease severity for patients based on TCR sequence features, with certain high-power models reaching near-perfect AUROC scores across various predictor permutations. These analyses provided an integrative, systems immunology view of T cell adaptive immune responses to COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...