Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mutat ; 36(4): 395-402, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25604253

ABSTRACT

Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations).


Subject(s)
Databases, Genetic , Dystrophin/genetics , Muscular Dystrophy, Duchenne/genetics , Mutation , Humans , Registries
2.
NMR Biomed ; 24(3): 253-62, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21404337

ABSTRACT

Duchenne muscular dystrophy (DMD) is a hereditary X-linked recessive disorder affecting the synthesis of dystrophin, a protein essential for structural stability in muscle. Dystrophin also occurs in the central nervous system, particularly in the neocortex, hippocampus and cerebellum. Quantitative metabolic analysis by localized (1) H MRS was performed in the cerebellum (12 patients and 15 controls) and a temporo-parietal location (eight patients and 15 controls) in patients with DMD and healthy controls to investigate possible metabolic differences. In addition, the site of individual mutations on the dystrophin gene was analyzed and neuropsychological cognitive functions were examined. Cognitive deficits in the patient group were found in line with earlier investigations, mainly concerning verbal short-term memory, visuo-spatial long-term memory and verbal fluency, but also the full-scale IQ. Causal mutations were identified in all patients with DMD. Quantitative MRS showed consistent choline deficits, in both cerebellar white matter and temporo-parietal cortex, as well as small, but significant, metabolic abnormalities for glutamate and total N-acetyl compounds in the temporo-parietal region. Compartment water analysis did not reveal any abnormalities. In healthy subjects, choline levels were age related in the cerebellum. The choline deficit contrasts with earlier findings in DMD, where a surplus of choline was postulated for the cerebellum. In patients, total N-acetyl compounds in the temporo-parietal region were related to verbal IQ and verbal short-term memory. However, choline, the putative main metabolic abnormality, was not found to be associated with cognitive deficits. Furthermore, in contrast with the cognitive performance, the metabolic brain composition did not depend significantly on whether or not gene mutations concerned the expression of the dystrophin isoform Dp140, leading to the conclusion that the effect of the missing Dp140 isoform on cognitive performance is not mediated through the observed metabolite composition, or is caused by local effects beyond the resolution accessible to MRS investigations.


Subject(s)
Brain/metabolism , Cognition/physiology , Dystrophin/genetics , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Mutation , Adolescent , Brain/anatomy & histology , Child , Humans , Magnetic Resonance Spectroscopy , Male , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/physiopathology , Young Adult
3.
J Clin Neurosci ; 18(1): 90-5, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21109441

ABSTRACT

Mutations in the dystrophin gene have long been recognised as a cause of mental retardation. However, for reasons that are unclear, some boys with dystrophin mutations do not show general cognitive deficits. To investigate the relationship between dystrophin mutations and cognition, the general intellectual abilities of a group of 25 boys with genetically confirmed Duchenne muscular dystrophy were evaluated. Furthermore, a subgroup underwent additional detailed neuropsychological assessment. The results showed a mean full scale intelligence quotient (IQ) of 88 (standard deviation 24). Patients performed very poorly on various neuropsychological tests, including arithmetics, digit span tests and verbal fluency. No simple relationship between dystrophin mutations and cognitive functioning could be detected. However, our analysis revealed that patients who lack the dystrophin isoform Dp140 have significantly greater cognitive problems.


Subject(s)
Cognition Disorders/genetics , Cognition/physiology , Dystrophin/genetics , Intelligence/genetics , Muscular Dystrophy, Duchenne/genetics , Adolescent , Child , Child, Preschool , Cognition Disorders/physiopathology , Cognition Disorders/psychology , Humans , Male , Muscular Dystrophy, Duchenne/physiopathology , Muscular Dystrophy, Duchenne/psychology , Mutation , Neuropsychological Tests , Statistics, Nonparametric , Young Adult
4.
Clin Chem ; 52(11): 2005-12, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16990428

ABSTRACT

BACKGROUND: Cystic fibrosis (CF) is associated with at least 1 pathogen point sequence variant on each CFTR allele. Some symptomatic patients, however, have only 1 detectable pathogen sequence variant and carry, on the other allele, a large deletion that is not detected by conventional screening methods. METHODS: For relative quantitative real-time PCR detection of large deletions in the CFTR gene, we designed DNA-specific primers for each exon of the gene and primers for a reference gene (beta2-microglobulin). For PCR we used a LightCycler system (Roche) and calculated the gene-dosage ratio of CFTR to beta2-microglobulin. We tested the method by screening all 27 exons in 3 healthy individuals and 2 patients with only 1 pathogen sequence variant. We then performed specific deletion screenings in 10 CF patients with known large deletions and a blinded analysis in which we screened 24 individuals for large deletions by testing 8 of 27 exons. RESULTS: None of the ratios for control samples were false positive (for deletions or duplications); moreover, for all samples from patients with known large deletions, the calculated ratios for deleted exons were close to 0.5. In addition, the results from the blinded analysis demonstrated that our method can also be used for the screening of single individuals. CONCLUSIONS: The LightCycler assay allows reliable and rapid screening for large deletions in the CFTR gene and detects the copy number of all 27 exons.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/diagnosis , Exons/genetics , Gene Deletion , Nucleic Acid Amplification Techniques/methods , Polymerase Chain Reaction/methods , Genetic Testing/methods , Humans , Nucleic Acid Amplification Techniques/instrumentation
6.
Muscle Nerve ; 29(5): 670-6, 2004 May.
Article in English | MEDLINE | ID: mdl-15116370

ABSTRACT

Mutations in CLCN1, the gene encoding the ClC-1 chloride channel in skeletal muscle, lead to myotonia congenita. The effects on the intramembranous channel forming domains have been investigated more than that at the intracellular C-terminus. We have performed a mutation screen involving the whole CLCN1 gene of patients with myotonia congenita by polymerase chain reaction (PCR), single-strand conformation polymorphism studies, and sequencing. Two unrelated patients harbored the same homozygous G-to-T mutation on the donor splice site of intron 17. This led to the skipping of exon 17, as evidenced by the reverse transcriptase PCR. When the exon 17-deleted CLCN1 was expressed in Xenopus oocytes, no chloride current was measurable. This function could be restored by coexpression with the wild-type channel. Our data suggest an important role of this C-terminal region and that exon 17 skipping resulting from a homozygous point mutation in CLCN1 can lead to recessive myotonia congenita.


Subject(s)
Chloride Channels/genetics , Exons/genetics , Genes, Recessive/genetics , Myotonia Congenita/genetics , Adult , Aged , Animals , Chloride Channels/biosynthesis , DNA Mutational Analysis , Female , Humans , Male , Myotonia Congenita/metabolism , Point Mutation/genetics , Xenopus laevis
7.
Hum Mutat ; 23(4): 385-91, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15024733

ABSTRACT

Recently developed PCR systems offer online-monitoring of amplification and allow simple and reliable DNA quantification. We have used the LightCycler system to develop a simple and rapid method for direct identification of female carriers of deletions and duplications in the dystrophin gene. The challenge resides in the ability to identify the presence of a deleted or duplicated allele over the background contributed by the normal allele. Quantification is based on the determination of the ratio between potentially deleted/duplicated dystrophin exons and non-deleted/-duplicated reference exons using the unspecific dsDNA-dye SYBRgreen I. In a retrospective study, we evaluated our method in female relatives of DMD/BMD patients with known carrier status by comparative analysis of deleted or duplicated versus non-deleted/-duplicated exons. Carrier status was accurately attributed in 100% of cases, the mean ratios being 0.52+/-0.12 for deletion carriers (expected value: 0.5) and 1.56+/-0.18 for duplication carriers (expected value: 1.5) vs. 1.022+/-0.17 for non-carriers (expected value: 1.0). The method proved to be simple, rapid, reliable, and cost-effective. It may be used for direct determination of deletions/duplications in potential DMD/BMD carriers and may easily be adapted for other genetic conditions involving deletions and duplications.


Subject(s)
Dystrophin/genetics , Genetic Carrier Screening/methods , Muscular Dystrophy, Duchenne/diagnosis , Polymerase Chain Reaction/methods , Benzothiazoles , Diamines , Female , Fluorescent Dyes , Gene Duplication , Humans , Organic Chemicals , Quinolines , Reproducibility of Results , Sequence Deletion , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...