Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
Plant Physiol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748602

ABSTRACT

Solanaceae (nightshade family) species synthesize a remarkable array of clade- and tissue-specific specialized metabolites. Protective acylsugars, one such class of structurally diverse metabolites, are produced by ACYLSUGAR ACYLTRANSFERASE (ASAT) enzymes from sugars and acyl-coenzyme A esters. Published research has revealed trichome acylsugars composed of glucose and sucrose cores in species across the family. In addition, acylsugars have been analyzed across a small fraction of the >1200 species in the phenotypically megadiverse Solanum genus, with a handful containing inositol and glycosylated inositol cores. The current study sampled several dozen species across subclades of Solanum to get a more detailed view of acylsugar chemodiversity. In depth characterization of acylsugars from the Clade II species brinjal eggplant (Solanum melongena) led to the identification of eight unusual structures with inositol or inositol glycoside cores and hydroxyacyl chains. Liquid chromatography-mass spectrometry analysis of 31 additional species in the Solanum genus revealed striking acylsugar diversity, with some traits restricted to specific clades and species. Acylinositols and inositol-based acyldisaccharides were detected throughout much of the genus. In contrast, acylglucoses and acylsucroses were more restricted in distribution. Analysis of tissue-specific transcriptomes and interspecific acylsugar acetylation differences led to the identification of the brinjal eggplant ASAT 3-LIKE 1 (SmASAT3-L1; SMEL4.1_12g015780) enzyme. This enzyme is distinct from previously characterized acylsugar acetyltransferases, which are in the ASAT4 clade, and appears to be a functionally divergent ASAT3. This study provides a foundation for investigating the evolution and function of diverse Solanum acylsugar structures and harnessing this diversity in breeding and synthetic biology.

2.
Sci Adv ; 10(17): eadn3991, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38657073

ABSTRACT

Tremendous plant metabolic diversity arises from phylogenetically restricted specialized metabolic pathways. Specialized metabolites are synthesized in dedicated cells or tissues, with pathway genes sometimes colocalizing in biosynthetic gene clusters (BGCs). However, the mechanisms by which spatial expression patterns arise and the role of BGCs in pathway evolution remain underappreciated. In this study, we investigated the mechanisms driving acylsugar evolution in the Solanaceae. Previously thought to be restricted to glandular trichomes, acylsugars were recently found in cultivated tomato roots. We demonstrated that acylsugars in cultivated tomato roots and trichomes have different sugar cores, identified root-enriched paralogs of trichome acylsugar pathway genes, and characterized a key paralog required for root acylsugar biosynthesis, SlASAT1-LIKE (SlASAT1-L), which is nested within a previously reported trichome acylsugar BGC. Last, we provided evidence that ASAT1-L arose through duplication of its paralog, ASAT1, and was trichome-expressed before acquiring root-specific expression in the Solanum genus. Our results illuminate the genomic context and molecular mechanisms underpinning metabolic diversity in plants.


Subject(s)
Gene Duplication , Gene Expression Regulation, Plant , Multigene Family , Plant Roots , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Plant Roots/metabolism , Plant Roots/genetics , Evolution, Molecular , Biosynthetic Pathways/genetics , Trichomes/genetics , Trichomes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny
3.
Genes (Basel) ; 14(8)2023 08 18.
Article in English | MEDLINE | ID: mdl-37628696

ABSTRACT

Maternal smoking in pregnancy (MSP) affects the offspring's DNA methylation (DNAm). There is a lack of knowledge regarding individual differences in susceptibility to exposure to MSP. Glutathione S-transferase (GST) genes are involved in protection against harmful oxidants such as those found in cigarette smoke. This study aimed to test whether polymorphisms in GST genes influence the effect of MSP on offspring DNAm. Using data from the Isle of Wight birth cohort, we assessed the association of MSP and offspring DNAm in 493 mother-child dyads (251 male, 242 female) with the effect-modifying role of GST gene polymorphism (at rs506008, rs574344, rs12736389, rs3768490, rs1537234, and rs1695). MSP was assessed by levels of nicotine and its downstream metabolites (cotinine, norcotinine, and hydroxycotinine) in maternal sera. In males, associations of hydroxycotinine with DNAm at cg18473733, cg25949550, cg11647108, and cg01952185 and norcotinine with DNAm at cg09935388 were modified by GST gene polymorphisms (p-values < 0.05). In females, associations of hydroxycotinine with DNAm at cg12160087 and norcotinine with DNAm at cg18473733 were modified by GST gene polymorphisms (p-values < 0.05). Our study emphasizes the role of genetic polymorphism in GST genes in DNAm's susceptibility to MSP.


Subject(s)
DNA Methylation , Family , Pregnancy , Humans , Female , Male , DNA Methylation/genetics , Glutathione Transferase/genetics , Polymorphism, Genetic , Smoking/adverse effects , Smoking/genetics
4.
Metabolites ; 13(6)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37367895

ABSTRACT

The role of metabolites, nutrients, and toxins (MNTs) in sera at the end of pregnancy and of their association with offspring respiratory and allergic disorders is underexplored. Untargeted approaches detecting a variety of compounds, known and unknown, are limited. In this cohort study, we first aimed at discovering associations of MNTs in grandmaternal (F0) serum with asthma, immunoglobulin E, skin prick tests, exhaled nitric oxide, and lung function parameters in their parental (F1) offspring. Second, for replication, we tested the identified associations of MNTs with disorders in their grandchildren (F2-offspring) based on F2 cord serum. The statistical analyses were sex-stratified. Using liquid chromatography/high-resolution mass spectrometry in F0, we detected signals for 2286 negative-ion lipids, 59 positive-ion lipids, and 6331 polar MNTs. Nine MNTs (one unknown MNT) discovered in F0-F1 and replicated in F2 showed higher risks of respiratory/allergic outcomes. Twelve MNTs (four unknowns) constituted a potential protection in F1 and F2. We recognized MNTs not yet considered candidates for respiratory/allergic outcomes: a phthalate plasticizer, an antihistamine, a bile acid metabolite, tryptophan metabolites, a hemiterpenoid glycoside, triacylglycerols, hypoxanthine, and polyphenol syringic acid. The findings suggest that MNTs are aspirants for clinical trials to prevent adverse respiratory/allergic outcomes.

5.
Pediatr Allergy Immunol ; 34(6): e13979, 2023 06.
Article in English | MEDLINE | ID: mdl-37366203

ABSTRACT

BACKGROUND: Fucoxanthin, a marine xanthophyll carotenoid, has been shown to exert beneficial health effects. Cell-based and animal-based experimental studies have shown that fucoxanthin has the potential to mitigate eczema symptoms. Hence, we sought to assess whether fucoxanthinol 3-arachidate, a fucoxanthin metabolite, measured in maternal serum at birth is associated with eczema development during early childhood. METHODS: Data from the 1989/1990 Isle of Wight birth cohort were analyzed. We focused on data obtained from the 1, 2, and 4 years follow-ups. Fucoxanthinol 3-arachidate was measured in maternal serum at the child's birth as abundance relative to the reference lipids. Eczema was ascertained according to parent-reported clinical history and characteristic morphology and distribution. Log-binomial regression models were used to estimate adjusted risk ratios (aRR) and their 95% confidence intervals (CI). RESULTS: A total of 592 subjects (49.2% males and 50.8% females) were included in the current analysis. Associations between fucoxanthinol 3-arachidate levels and eczema risk during the first 4 years of life (longitudinal analysis) were evaluated using four modeling approaches, which showed higher fucoxanthinol 3-arachidate levels were associated with reduced eczema risk: (i) aRRper 10 unit increase = 0.88, 95% CI: 0.76-1.03; (ii) aRR>0 vs. =0 = 0.67, 0.45-0.99; (iii) aRR≥2.3 vs. <2.3 = 0.66, 0.44-0.98; and (iv) aRRtertile 3 vs. tertile 1 = 0.65, 0.42-0.99. CONCLUSION: Our findings suggest that increased fucoxanthinol 3-arachidate levels measured in maternal serum at the child's birth is associated with reduced eczema risk during the first 4 years of the offspring life.


Subject(s)
Eczema , Xanthophylls , Male , Female , Animals , Child, Preschool , Humans , Cohort Studies , Xanthophylls/metabolism , Eczema/epidemiology
6.
Sci Rep ; 13(1): 4063, 2023 03 11.
Article in English | MEDLINE | ID: mdl-36906704

ABSTRACT

Methods for collection of placental tissue at room temperature for metabolic profiling are described. Specimens were excised from the maternal side of the placenta and immediately flash frozen or fixed and stored for 1, 6, 12, 24, or 48 h in 80% methanol. Untargeted metabolic profiling was performed on both the methanol-fixed tissue and the methanol extract. Data were analyzed using Gaussian generalized estimating equations, two sample t-tests with false discovery rate (FDR) corrections, and principal components analysis. Methanol-fixed tissue samples and methanol extracts had a similar number of metabolites (p = 0.45, p = 0.21 in positive vs. negative ion mode). In positive ion mode, when compared to flash frozen tissue, both the methanol extract and methanol-fixed tissue (6 h) had a higher number of metabolites detected (146 additional metabolites, pFDR = 0.020; 149 additional metabolites, pFDR = 0.017; respectively), but these associations were not found in negative ion mode (all pFDR ≥ 0.05). Principle components analysis demonstrated separation of the metabolite features in the methanol extract, but similarity between methanol-fixed tissue and flash frozen tissue. These results show that placental tissue samples collected in 80% methanol at room temperature can yield similar metabolic data to flash frozen specimens.


Subject(s)
Methanol , Placenta , Female , Pregnancy , Humans , Metabolomics/methods , Cryopreservation , Freezing
7.
New Phytol ; 237(5): 1810-1825, 2023 03.
Article in English | MEDLINE | ID: mdl-36451537

ABSTRACT

Plant-specialized metabolism is complex, with frequent examples of highly branched biosynthetic pathways, and shared chemical intermediates. As such, many plant-specialized metabolic networks are poorly characterized. The N-methyl Δ1 -pyrrolinium cation is a simple pyrrolidine alkaloid and precursor of pharmacologically important tropane alkaloids. Silencing of pyrrolidine ketide synthase (AbPyKS) in the roots of Atropa belladonna (Deadly Nightshade) reduces tropane alkaloid abundance and causes high N-methyl Δ1 -pyrrolinium cation accumulation. The consequences of this metabolic shift on alkaloid metabolism are unknown. In this study, we utilized discovery metabolomics coupled with AbPyKS silencing to reveal major changes in the root alkaloid metabolome of A. belladonna. We discovered and annotated almost 40 pyrrolidine alkaloids that increase when AbPyKS activity is reduced. Suppression of phenyllactate biosynthesis, combined with metabolic engineering in planta, and chemical synthesis indicates several of these pyrrolidines share a core structure formed through the nonenzymatic Mannich-like decarboxylative condensation of the N-methyl Δ1 -pyrrolinium cation with 2-O-malonylphenyllactate. Decoration of this core scaffold through hydroxylation and glycosylation leads to mono- and dipyrrolidine alkaloid diversity. This study reveals the previously unknown complexity of the A. belladonna root metabolome and creates a foundation for future investigation into the biosynthesis, function, and potential utility of these novel alkaloids.


Subject(s)
Alkaloids , Atropa belladonna , Atropa belladonna/metabolism , Alkaloids/metabolism , Tropanes/chemistry , Tropanes/metabolism , Pyrrolidines/metabolism
8.
J Phys Chem A ; 126(47): 8851-8858, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36383030

ABSTRACT

Identifying and quantifying mixtures of compounds with very similar fragmentation patterns in their mass spectra presents a unique and challenging problem. In particular, the mass spectra of most per- and poly-fluoroalkyl substances (PFAS) lack a molecular ion. This complicates their identification, especially when using the absence of chromatographic separation. Here, we focus on linear, nonpolar, short-chain PFAS, which have received less attention than amphipathic PFAS despite their longer environmental lifetimes and greater global warming potentials. We identify and quantify n-C5F12 and n-C6F14 in binary mixtures by analyzing small changes in abundances of the main fragment ions following femtosecond tunnel laser ionization, without the need of chromatographic separation. Time-resolved femtosecond ionization mass spectrometry reveals that the metastable cation of both compounds undergoes predissociation within 1-2 ps of ion formation, with yields of C3F7+ showing evidence of coherent vibrational dynamics. These coherent oscillations are compared to low-level ion-state calculations and supported the idea that the oscillations in the C3F7+ ion yield are due to vibrations in the C5F12+• and C6F14+• radical cations and are associated with the predissociation dynamics of the metastable molecular ion. Surprisingly, we find that the fragment ions used for quantifying the mixtures have similar fragmentation dynamics. Conversely, the odd-electron C2F4+• fragment shows different time dependence between the two compounds, yet has negligible difference in the relative ion yield between the two compounds. Our findings indicate that femtosecond laser ionization may be a useful tool for identifying and quantifying mixtures of PFAS without the need of chromatography or high-resolution mass spectrometry.


Subject(s)
Fluorocarbons , Fluorocarbons/analysis , Mass Spectrometry/methods , Electrons , Cations
9.
J Lipid Res ; 63(12): 100297, 2022 12.
Article in English | MEDLINE | ID: mdl-36243101

ABSTRACT

Bile acids (BAs) are steroid detergents in bile that contribute to fat absorption, cell signaling, and microbiome interactions. The final step in their synthesis is amino acid conjugation with either glycine or taurine in the liver by the enzyme bile acid-CoA:amino acid N-acyltransferase (BAAT). Here, we describe the microbial, chemical, and physiological consequences of Baat gene knockout. Baat-/- mice were underweight after weaning but quickly exhibited catch-up growth. At three weeks of age, KO animals had increased phospholipid excretion and decreased subcutaneous fat pad mass, liver mass, glycogen staining in hepatocytes, and hepatic vitamin A stores, but these were less marked in adulthood. Additionally, KO mice had an altered microbiome in early life. Their BA pool was highly enriched in cholic acid but not completely devoid of conjugated BAs. KO animals had 27-fold lower taurine-conjugated BAs than wild type in their liver but similar concentrations of glycine-conjugated BAs and higher microbially conjugated BAs. Furthermore, the BA pool in Baat-/- was enriched in a variety of unusual BAs that were putatively sourced from cysteamine conjugation with subsequent oxidation and methylation of the sulfur group mimicking taurine. Antibiotic treatment of KO mice indicated the microbiome was not the likely source of the unusual conjugations, instead, the unique BAs in KO animals were likely derived from the peroxisomal acyltransferases Acnat1 and Acnat2, which are duplications of Baat in the mouse genome that are inactivated in humans. This study demonstrates that BA conjugation is important for early life development of mice.


Subject(s)
Bile Acids and Salts , Gastrointestinal Microbiome , Humans , Mice , Animals , Adult , Gene Knockout Techniques , Mice, Knockout , Liver/metabolism , Taurine/metabolism , Glycine
10.
Biotechnol Biofuels Bioprod ; 15(1): 116, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36310161

ABSTRACT

BACKGROUND: Developing economically viable pathways to produce renewable energy has become an important research theme in recent years. Lignocellulosic biomass is a promising feedstock that can be converted into second-generation biofuels and bioproducts. Global warming has adversely affected climate change causing many environmental changes that have impacted earth surface temperature and rainfall patterns. Recent research has shown that environmental growth conditions altered the composition of drought-stressed switchgrass and directly influenced the extent of biomass conversion to fuels by completely inhibiting yeast growth during fermentation. Our goal in this project was to find a way to overcome the microbial inhibition and characterize specific compounds that led to this inhibition. Additionally, we also determined if these microbial inhibitors were plant-generated compounds, by-products of the pretreatment process, or a combination of both. RESULTS: Switchgrass harvested in drought (2012) and non-drought (2010) years were pretreated using Ammonia Fiber Expansion (AFEX). Untreated and AFEX processed samples were then extracted using solvents (i.e., water, ethanol, and ethyl acetate) to selectively remove potential inhibitory compounds and determine whether pretreatment affects the inhibition. High solids loading enzymatic hydrolysis was performed on all samples, followed by fermentation using engineered Saccharomyces cerevisiae. Fermentation rate, cell growth, sugar consumption, and ethanol production were used to evaluate fermentation performance. We found that water extraction of drought-year switchgrass before AFEX pretreatment reduced the inhibition of yeast fermentation. The extracts were analyzed using liquid chromatography-mass spectrometry (LC-MS) to detect compounds enriched in the extracted fractions. Saponins, a class of plant-generated triterpene or steroidal glycosides, were found to be significantly more abundant in the water extracts from drought-year (inhibitory) switchgrass. The inhibitory nature of the saponins in switchgrass hydrolysate was validated by spiking commercially available saponin standard (protodioscin) in non-inhibitory switchgrass hydrolysate harvested in normal year. CONCLUSIONS: Adding a water extraction step prior to AFEX-pretreatment of drought-stressed switchgrass effectively overcame inhibition of yeast growth during bioethanol production. Saponins appear to be generated by the plant as a response to drought as they were significantly more abundant in the drought-stressed switchgrass water extracts and may contribute toward yeast inhibition in drought-stressed switchgrass hydrolysates.

11.
Nat Commun ; 13(1): 3832, 2022 07 02.
Article in English | MEDLINE | ID: mdl-35780230

ABSTRACT

Plant alkaloids constitute an important class of bioactive chemicals with applications in medicine and agriculture. However, the knowledge gap of the diversity and biosynthesis of phytoalkaloids prevents systematic advances in biotechnology for engineered production of these high-value compounds. In particular, the identification of cytochrome P450s driving the structural diversity of phytoalkaloids has remained challenging. Here, we use a combination of reverse genetics with discovery metabolomics and multivariate statistical analysis followed by in planta transient assays to investigate alkaloid diversity and functionally characterize two candidate cytochrome P450s genes from Atropa belladonna without a priori knowledge of their functions or information regarding the identities of key pathway intermediates. This approach uncovered a largely unexplored root localized alkaloid sub-network that relies on pseudotropine as precursor. The two cytochrome P450s catalyze N-demethylation and ring-hydroxylation reactions within the early steps in the biosynthesis of diverse N-demethylated modified tropane alkaloids.


Subject(s)
Alkaloids , Tropanes , Alkaloids/chemistry , Cytochrome P-450 Enzyme System/genetics , Metabolomics , Tropanes/metabolism
12.
J Agric Food Chem ; 70(26): 8010-8023, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35729681

ABSTRACT

Switchgrass (Panicum virgatum L.) is a bioenergy crop that grows productively on lands not suitable for food production and is an excellent target for low-pesticide input biomass production. We hypothesize that resistance to insect pests and microbial pathogens is influenced by low-molecular-weight compounds known as specialized metabolites. We employed untargeted liquid chromatography-mass spectrometry, quantitative gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance spectroscopy to identify differences in switchgrass ecotype metabolomes. This analysis revealed striking differences between upland and lowland switchgrass metabolomes as well as distinct developmental profiles. Terpenoid- and polyphenol-derived specialized metabolites were identified, including steroidal saponins, di- and sesqui-terpenoids, and flavonoids. The saponins are particularly abundant in switchgrass extracts and have diverse aglycone cores and sugar moieties. We report seven structurally distinct steroidal saponin classes with unique steroidal cores and glycosylated at one or two positions. Quantitative GC-MS revealed differences in total saponin concentrations in the leaf blade, leaf sheath, stem, rhizome, and root (2.3 ± 0.10, 0.5 ± 0.01, 2.5 ± 0.5, 3.0 ± 0.7, and 0.3 ± 0.01 µg/mg of dw, respectively). The quantitative data also demonstrated that saponin concentrations are higher in roots of lowland (ranging from 3.0 to 6.6 µg/mg of dw) than in upland (from 0.9 to 1.9 µg/mg of dw) ecotype plants, suggesting ecotypic-specific biosynthesis and/or biological functions. These results enable future testing of these specialized metabolites on biotic and abiotic stress tolerance and can provide information on the development of low-input bioenergy crops.


Subject(s)
Panicum , Saponins , Ecotype , Genotype , Metabolomics , Panicum/chemistry , Saponins/metabolism
13.
Plant Physiol ; 190(1): 146-164, 2022 08 29.
Article in English | MEDLINE | ID: mdl-35477794

ABSTRACT

Acylsugars are defensive, trichome-synthesized sugar esters produced in plants across the Solanaceae (nightshade) family. Although assembled from simple metabolites and synthesized by a relatively short core biosynthetic pathway, tremendous within- and across-species acylsugar structural variation is documented across the family. To advance our understanding of the diversity and the synthesis of acylsugars within the Nicotiana genus, trichome extracts were profiled across the genus coupled with transcriptomics-guided enzyme discovery and in vivo and in vitro analysis. Differences in the types of sugar cores, numbers of acylations, and acyl chain structures contributed to over 300 unique annotated acylsugars throughout Nicotiana. Placement of acyl chain length into a phylogenetic context revealed that an unsaturated acyl chain type was detected in a few closely related species. A comparative transcriptomics approach identified trichome-enriched Nicotiana acuminata acylsugar biosynthetic candidate enzymes. More than 25 acylsugar variants could be produced in a single enzyme assay with four N. acuminata acylsugar acyltransferases (NacASAT1-4) together with structurally diverse acyl-CoAs and sucrose. Liquid chromatography coupled with mass spectrometry screening of in vitro products revealed the ability of these enzymes to make acylsugars not present in Nicotiana plant extracts. In vitro acylsugar production also provided insights into acyltransferase acyl donor promiscuity and acyl acceptor specificity as well as regiospecificity of some ASATs. This study suggests that promiscuous Nicotiana acyltransferases can be used as synthetic biology tools to produce novel and potentially useful metabolites.


Subject(s)
Acyltransferases , Trichomes , Acyltransferases/genetics , Acyltransferases/metabolism , Carbohydrates , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Sugars/metabolism , Synthetic Biology , Nicotiana/genetics , Nicotiana/metabolism , Trichomes/metabolism
14.
Environ Epigenet ; 8(1): dvac002, 2022.
Article in English | MEDLINE | ID: mdl-35317219

ABSTRACT

Acetaminophen is used by nearly two-thirds of pregnant women. Although considered safe, studies have demonstrated associations between prenatal acetaminophen use and adverse health outcomes in offspring. Since DNA methylation (DNAm) at birth may act as an early indicator of later health, assessments on whether DNAm of newborns is associated with gestational acetaminophen use or its metabolites are needed. Using data from three consecutive generations of the Isle of Wight cohort (F0-grandmothers, F1-mothers, and F2-offspring) we investigated associations between acetaminophen metabolites in F0 serum at delivery with epigenome-wide DNAm in F1 (Guthrie cards) and between acetaminophen use of F1 and F2-cord-serum levels with F2 cord blood DNAm. In epigenome-wide screening, we eliminated non-informative DNAm sites followed by linear regression of informative sites. Based on repeated pregnancies, indication bias analyses tested whether acetaminophen indicated maternal diseases or has a risk in its own right. Considering that individuals with similar intake process acetaminophen differently, metabolites were clustered to distinguish metabolic exposures. Finally, metabolite clusters from F1-maternal and F2-cord sera were tested for their associations with newborn DNAm (F1 and F2). Twenty-one differential DNAm sites in cord blood were associated with reported maternal acetaminophen intake in the F2 generation. For 11 of these cytosine-phosphate-guanine (CpG) sites, an indication bias was excluded and five were replicated in F2 with metabolite clusters. In addition, metabolite clusters showed associations with 25 CpGs in the F0-F1 discovery analysis, of which five CpGs were replicated in the F2-generation. Our results suggest that prenatal acetaminophen use, measured as metabolites, may influence DNAm in newborns.

15.
Sci Rep ; 12(1): 2521, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35169269

ABSTRACT

Novel Immunological and Mass Spectrometry Methods for Comprehensive Analysis of Recalcitrant Oligosaccharides in AFEX Pretreated Corn Stover. Lignocellulosic biomass is a sustainable alternative to fossil fuel and is extensively used for developing bio-based technologies to produce products such as food, feed, fuel, and chemicals. The key to these technologies is to develop cost competitive processes to convert complex carbohydrates present in plant cell wall to simple sugars such as glucose, xylose, and arabinose. Since lignocellulosic biomass is highly recalcitrant, it must undergo a combination of thermochemical treatment such as Ammonia Fiber Expansion (AFEX), dilute acid (DA), Ionic Liquid (IL) and biological treatment such as enzyme hydrolysis and microbial fermentation to produce desired products. However, when using commercial fungal enzymes during hydrolysis, only 75-85% of the soluble sugars generated are monomeric sugars, while the remaining 15-25% are soluble recalcitrant oligosaccharides that cannot be easily utilized by microorganisms. Previously, we successfully separated and purified the soluble recalcitrant oligosaccharides using a combination of charcoal and celite-based separation followed by size exclusion chromatography and studies their inhibitory properties on enzymes. We discovered that the oligosaccharides with higher degree of polymerization (DP) containing methylated uronic acid substitutions were more recalcitrant towards commercial enzyme mixtures than lower DP and neutral oligosaccharides. Here, we report the use of several complementary techniques that include glycome profiling using plant biomass glycan specific monoclonal antibodies (mAbs) to characterize sugar linkages in plant cell walls and enzymatic hydrolysate, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) using structurally-informative diagnostic peaks offered by negative ion post-secondary decay spectra, gas chromatography followed by mass spectrometry (GC-MS) to characterize oligosaccharide sugar linkages with and without derivatization. Since oligosaccharides (DP 4-20) are small, it is challenging to mobilize these molecules for mAbs binding and characterization. To overcome this problem, we have applied a new biotin-coupling based oligosaccharide immobilization method that successfully tagged most of the low DP soluble oligosaccharides on to a micro-plate surface followed by specific linkage analysis using mAbs in a high-throughput system. This new approach will help develop more advanced versions of future high throughput glycome profiling methods that can be used to separate and characterize oligosaccharides present in biomarkers for diagnostic applications.


Subject(s)
Antibodies, Monoclonal/immunology , Biotin/chemistry , Gas Chromatography-Mass Spectrometry/methods , Oligosaccharides/chemistry , Oligosaccharides/immunology , Plant Extracts/chemistry , Plant Extracts/immunology , Plant Leaves/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Zea mays/chemistry , Biomass , Carbohydrate Conformation , Cell Wall/chemistry , Chromatography, Gel/methods , Enzyme-Linked Immunosorbent Assay/methods , Epitopes/immunology , Hydrolysis , Lignin/chemistry , Sugars/chemistry
16.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34969836

ABSTRACT

Defining the denatured state ensemble (DSE) and disordered proteins is essential to understanding folding, chaperone action, degradation, and translocation. As compared with water-soluble proteins, the DSE of membrane proteins is much less characterized. Here, we measure the DSE of the helical membrane protein GlpG of Escherichia coli (E. coli) in native-like lipid bilayers. The DSE was obtained using our steric trapping method, which couples denaturation of doubly biotinylated GlpG to binding of two streptavidin molecules. The helices and loops are probed using limited proteolysis and mass spectrometry, while the dimensions are determined using our paramagnetic biotin derivative and double electron-electron resonance spectroscopy. These data, along with our Upside simulations, identify the DSE as being highly dynamic, involving the topology changes and unfolding of some of the transmembrane (TM) helices. The DSE is expanded relative to the native state but only to 15 to 75% of the fully expanded condition. The degree of expansion depends on the local protein packing and the lipid composition. E. coli's lipid bilayer promotes the association of TM helices in the DSE and, probably in general, facilitates interhelical interactions. This tendency may be the outcome of a general lipophobic effect of proteins within the cell membranes.


Subject(s)
Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Protein Conformation , Biotinylation , Cell Membrane , Cryoelectron Microscopy , DNA-Binding Proteins , Endopeptidases , Escherichia coli , Escherichia coli Proteins/chemistry , Models, Molecular , Protein Denaturation , Protein Folding , Streptavidin
17.
Sci Adv ; 7(46): eabj8726, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34757799

ABSTRACT

Plants synthesize myriad phylogenetically restricted specialized (aka "secondary") metabolites with diverse structures. Metabolism of acylated sugar esters in epidermal glandular secreting trichomes across the Solanaceae (nightshade) family is ideal for investigating the mechanisms of evolutionary metabolic diversification. We developed methods to structurally analyze acylhexose mixtures by 2D NMR, which led to the insight that the Old World species black nightshade (Solanum nigrum) accumulates acylglucoses and acylinositols in the same tissue. Detailed in vitro biochemistry, cross-validated by in vivo virus-induced gene silencing, revealed two unique features of the four-step acylglucose biosynthetic pathway: A trichome-expressed, neofunctionalized invertase-like enzyme, SnASFF1, converts BAHD-produced acylsucroses to acylglucoses, which, in turn, are substrates for the acylglucose acyltransferase, SnAGAT1. This biosynthetic pathway evolved independently from that recently described in the wild tomato Solanum pennellii, reinforcing that acylsugar biosynthesis is evolutionarily dynamic with independent examples of primary metabolic enzyme cooption and additional variation in BAHD acyltransferases.

18.
Metabolites ; 11(10)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34677422

ABSTRACT

Open microalgal ponds used in industrial biomass production are susceptible to a number of biotic and abiotic environmental stressors (e.g., grazers, pathogens, pH, temperature, etc.) resulting in pond crashes with high economic costs. Identification of signature chemicals to aid in rapid, non-invasive, and accurate identification of the stressors would facilitate targeted and effective treatment to save the algal crop from a catastrophic crash. Specifically, we were interested in identifying volatile organic compounds (VOCs) that can be used to as an early diagnostic for algal crop damage. Cultures of Microchloropsis gaditana were subjected to two forms of algal crop damage: (1) active grazing by the marine rotifer, Brachionus plicatilis, or (2) repeated freeze-thaw cycles. VOCs emitted above the headspace of these algal cultures were collected using fieldable solid phase microextraction (SPME) fibers. An untargeted analysis and identification of VOCs was conducted using gas chromatography-mass spectrometry (GC-MS). Diagnostic VOCs unique to each algal crop damage mechanism were identified. Active rotifer grazing of M. gaditana was characterized by the appearance of carotenoid degradation products, including ß-cyclocitral and various alkenes. Freeze-thaw algae produced a different set of VOCs, including palmitoleic acid. Both rotifer grazing and freeze-thawed algae produced ß-ionone as a VOC, possibly suggesting a common stress-induced cellular mechanism. Importantly, these identified VOCs were all absent from healthy algal cultures of M. gaditana. Early detection of biotic or abiotic environmental stressors will facilitate early diagnosis and application of targeted treatments to prevent algal pond crashes. Thus, our work further supports the use of VOCs for monitoring the health of algal ponds to ultimately enhance algal crop yields for production of biofuel.

19.
Molecules ; 26(9)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946338

ABSTRACT

The genus Datura (Solanaceae) contains nine species of medicinal plants that have held both curative utility and cultural significance throughout history. This genus' particular bioactivity results from the enormous diversity of alkaloids it contains, making it a valuable study organism for many disciplines. Although Datura contains mostly tropane alkaloids (such as hyoscyamine and scopolamine), indole, beta-carboline, and pyrrolidine alkaloids have also been identified. The tools available to explore specialized metabolism in plants have undergone remarkable advances over the past couple of decades and provide renewed opportunities for discoveries of new compounds and the genetic basis for their biosynthesis. This review provides a comprehensive overview of studies on the alkaloids of Datura that focuses on three questions: How do we find and identify alkaloids? Where do alkaloids come from? What factors affect their presence and abundance? We also address pitfalls and relevant questions applicable to natural products and metabolomics researchers. With both careful perspectives and new advances in instrumentation, the pace of alkaloid discovery-from not just Datura-has the potential to accelerate dramatically in the near future.


Subject(s)
Alkaloids/chemistry , Biological Products/chemistry , Datura/chemistry , Phytochemicals/chemistry , Alkaloids/analysis , Alkaloids/isolation & purification , Alkaloids/metabolism , Biological Products/analysis , Biological Products/isolation & purification , Biological Products/metabolism , Chemical Fractionation , Chemical Phenomena , Chromatography, Liquid , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Structure , Phytochemicals/analysis , Phytochemicals/isolation & purification , Phytochemicals/metabolism , Structure-Activity Relationship
20.
Nat Ecol Evol ; 5(4): 495-503, 2021 04.
Article in English | MEDLINE | ID: mdl-33558733

ABSTRACT

Coral bleaching has a profound impact on the health and function of reef ecosystems, but the metabolomic effects of coral bleaching are largely uncharacterized. Here, untargeted metabolomics was used to analyse pairs of adjacent Montipora capitata corals that had contrasting bleaching phenotypes during a severe bleaching event in 2015. When these same corals were sampled four years later while visually healthy, there was a strong metabolomic signature of bleaching history. This was primarily driven by betaine lipids from the symbiont, where corals that did not bleach were enriched in saturated lyso-betaine lipids. Immune modulator molecules were also altered by bleaching history in both the coral host and the algal symbiont, suggesting a shared role in partner choice and bleaching response. Metabolomics from a separate set of validation corals was able to predict the bleaching phenotype with 100% accuracy. Experimental temperature stress induced phenotype-specific responses, which magnified differences between historical bleaching phenotypes. These findings indicate that natural bleaching susceptibility is manifested in the biochemistry of both the coral animal and its algal symbiont. This metabolome difference is stable through time and results in different physiological responses to temperature stress. This work provides insight into the biochemical mechanisms of coral bleaching and presents a valuable new tool for resilience-based reef restoration.


Subject(s)
Anthozoa , Animals , Coral Reefs , Ecosystem , Metabolomics , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...