Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Biol Sci ; 286(1905): 20190718, 2019 06 26.
Article in English | MEDLINE | ID: mdl-31213186

ABSTRACT

Neonicotinoids are effective insecticides used on many important arable and horticultural crops. They are nicotinic acetylcholine receptor agonists which disrupt the function of insect neurons and cause paralysis and death. In addition to direct mortality, there are numerous sublethal effects of low doses of neonicotinoids on bees. We hypothesize that some of these large array of effects could be a consequence of epigenetic changes in bees induced by neonicotinoids. We compared whole methylome (BS-seq) and RNA-seq libraries of the brains of buff-tailed bumblebee Bombus terrestris workers exposed to field-realistic doses of the neonicotinoid imidacloprid to libraries from control workers. We found numerous genes which show differential expression between neonicotinoid-treated bees and control bees, but no differentially methylated cytosines in any context. We found CpG methylation to be focused mainly in exons and associated with highly expressed genes. We discuss the implications of our results for future legislation.


Subject(s)
Bees/physiology , Insecticides/toxicity , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Toxicity Tests , Animals , DNA Methylation/drug effects , Gene Expression/drug effects
2.
Eur Cell Mater ; 14: 20-8; discussion 28-9, 2007 Aug 04.
Article in English | MEDLINE | ID: mdl-17676563

ABSTRACT

Despite the fact that lubrication is a primary function of articular cartilage, there is little information on the frictional properties of cartilaginous engineered tissues. A biochemical mediator of cartilage frictional properties in boundary lubrication, lubricin, has been shown to be secreted from chondrocyte-hydrogel constructs. In the current studies we utilized articular chondrocytes (CON), meniscal fibrochondrocytes (MEN), and mesenchymal stem cells (MSC) in alginate cultures to determine lubricin localization and the inherent boundary lubrication friction coefficient. Additionally, we investigated the ability of these tissues to be lubricated by synovial fluid and the reversibility of this lubrication. Cell-alginate constructs were cultured over six weeks, culture medium assayed for lubricin release by ELISA and constructs analyzed with immunohistochemical (IHC) methods to investigate the localization of lubricin. Engineered tissues were tested in a custom friction instrument to determine the equilibrium friction coefficient (microeq) in boundary lubrication mode, following incubation with equine synovial fluid (SF), and subsequent extraction in l.5M NaCl. MSCs released 10 fold more lubricin than CON or MEN cultures. IHC analysis showed no localization of lubricin to alginate, minimal focal staining of engineered constructs at six weeks in culture, and the ability of all engineered tissues to localize lubricin when exogenously treated with SF. Frictional characterization showed no difference in microeq over culture for all engineered tissues, while incubation in SF decreased microeq for all tissues over culture duration, and extraction of lubricin resulted in a loss of lubrication of all engineered tissues.


Subject(s)
Cartilage, Articular/metabolism , Tissue Engineering/methods , Alginates/metabolism , Animals , Culture Media , Friction , Glucuronic Acid/metabolism , Glycoproteins/metabolism , Hexuronic Acids/metabolism , Horses , Protein Transport , Time Factors , Tissue Engineering/instrumentation
3.
Eur Cell Mater ; 13: 40-5; discussion 45, 2007 Mar 20.
Article in English | MEDLINE | ID: mdl-17373642

ABSTRACT

Lubricin, also commonly referred to as superficial zone protein (SZP) and proteoglycan 4 (PRG4), is a multifaceted, cytoprotective glycoprotein that contributes to the boundary lubrication properties facilitating low friction levels at interfacing surfaces of articular cartilage. Biological processes effecting the gain or loss of lubricin function may therefore have important consequences relevant to joint physiology and pathology. Herein, we describe experiments conducted to extend our understanding of the influence of various cytokines and growth factors on lubricin gene expression and protein secretion in synovial tissues. Exposure of synoviocytes, chondrocytes and cartilage explants to proinflammatory cytokines such as interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF-alpha) results in a marked reduction in the expression and/or abundance of secreted lubricin, with corresponding alterations in the amounts of cartilage-associated (boundary) lubricin. Conversely, treatment with transforming growth factor-beta (TGF-beta) significantly upregulates lubricin synthesis, secretion and cartilage boundary association. Oncostatin M also appears to be capable of modulating lubricin metabolism, with the potential to induce lubricin synthesis by chondrocytes. Collectively, the results of studies on cytokine and growth factor regulation of lubricin biosynthesis and biodistribution may help provide new insights and therapeutic perspectives for promoting joint function.


Subject(s)
Cartilage, Articular/metabolism , Cytokines/physiology , Glycoproteins/metabolism , Intercellular Signaling Peptides and Proteins/physiology , Synovial Membrane/metabolism , Animals , Cartilage, Articular/cytology , Cattle , Cells, Cultured , Chondrocytes/metabolism , Gene Expression Regulation/drug effects , Glycoproteins/biosynthesis , RNA, Messenger/metabolism , Synovial Membrane/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...