Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 20(1): 109-120, 2021 01.
Article in English | MEDLINE | ID: mdl-33203731

ABSTRACT

T cells have a unique capability to eliminate cancer cells and fight malignancies. Cancer cells have adopted multiple immune evasion mechanisms aimed at inhibiting T cells. Dramatically improved patient outcomes have been achieved with therapies genetically reprogramming T cells, blocking T-cell inhibition by cancer cells, or transiently connecting T cells with cancer cells for redirected lysis. This last modality is based on antibody constructs that bind a surface antigen on cancer cells and an invariant component of the T-cell receptor. Although high response rates were observed with T-cell engagers specific for CD19, CD20, or BCMA in patients with hematologic cancers, the treatment of solid tumors has been less successful. Here, we developed and characterized a novel T-cell engager format, called TriTAC (for Trispecific T-cell Activating Construct). TriTACs are engineered with features to improve patient safety and solid tumor activity, including high stability, small size, flexible linkers, long serum half-life, and highly specific and potent redirected lysis. The present study establishes the structure/activity relationship of TriTACs and describes the development of HPN424, a PSMA- (FOLH1-) targeting TriTAC in clinical development for patients with metastatic castration-resistant prostate cancer.


Subject(s)
Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , T-Lymphocytes/metabolism , Albumins/pharmacology , Animals , Antineoplastic Agents/blood , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , CD3 Complex/metabolism , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Half-Life , Humans , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Macaca fascicularis , Mice, Inbred NOD , Mice, SCID , Neoplasms/pathology , Prostate-Specific Antigen/metabolism , T-Lymphocytes/drug effects
2.
Clin Cancer Res ; 27(5): 1452-1462, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33262134

ABSTRACT

PURPOSE: Mesothelin (MSLN) is a glycophosphatidylinositol-linked tumor antigen overexpressed in a variety of malignancies, including ovarian, pancreatic, lung, and triple-negative breast cancer. Early signs of clinical efficacy with MSLN-targeting agents have validated MSLN as a promising target for therapeutic intervention, but therapies with improved efficacy are still needed to address the significant unmet medical need posed by MSLN-expressing cancers. EXPERIMENTAL DESIGN: We designed HPN536, a 53-kDa, trispecific, T-cell-activating protein-based construct, which binds to MSLN-expressing tumor cells, CD3ε on T cells, and to serum albumin. Experiments were conducted to assess the potency, activity, and half-life of HPN536 in in vitro assays, rodent models, and in nonhuman primates (NHP). RESULTS: HPN536 binds to MSLN-expressing tumor cells and to CD3ε on T cells, leading to T-cell activation and potent redirected target cell lysis. A third domain of HPN536 binds to serum albumin for extension of plasma half-life. In cynomolgus monkeys, HPN536 at doses ranging from 0.1 to 10 mg/kg demonstrated MSLN-dependent pharmacologic activity, was well tolerated, and showed pharmacokinetics in support of weekly dosing in humans. CONCLUSIONS: HPN536 is potent, is well tolerated, and exhibits extended half-life in NHPs. It is currently in phase I clinical testing in patients with MSLN-expressing malignancies (NCT03872206).


Subject(s)
Immunotherapy/methods , Lymphocyte Activation/immunology , Mesothelin/antagonists & inhibitors , Neoplasms/drug therapy , Single-Domain Antibodies/pharmacology , T-Lymphocytes/immunology , Animals , Antigens, Neoplasm/immunology , Apoptosis , Cell Proliferation , Female , Humans , Macaca fascicularis , Male , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Peptide Fragments/immunology , Single-Domain Antibodies/immunology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
3.
J Med Chem ; 62(22): 10258-10271, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31736296

ABSTRACT

Overexpression of the antiapoptotic protein Mcl-1 provides a survival advantage to some cancer cells, making inhibition of this protein an attractive therapeutic target for the treatment of certain types of tumors. Herein, we report our efforts toward the identification of a novel series of macrocyclic Mcl-1 inhibitors featuring an α-hydroxy phenylacetic acid pharmacophore or bioisostere. This work led to the discovery of 1, a potent Mcl-1 inhibitor (IC50 = 19 nM in an OPM-2 cell viability assay) with good pharmacokinetic properties and excellent in vivo efficacy in an OPM-2 multiple myeloma xenograft model.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Phenylacetates/chemistry , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Biological Availability , Cell Line, Tumor , Crystallography, X-Ray , Drug Design , Drug Stability , Female , Humans , Hydrogen Bonding , Mice, Nude , Multiple Myeloma/drug therapy , Myeloid Cell Leukemia Sequence 1 Protein/chemistry , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Rats, Sprague-Dawley , Structure-Activity Relationship , Sulfonamides/chemistry , Xenograft Model Antitumor Assays
4.
Bioorg Med Chem ; 22(23): 6570-6585, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25456383

ABSTRACT

We report the discovery of a novel series of 2-(3-alkoxy-1-azetidinyl) quinolines as potent and selective PDE10A inhibitors. Structure-activity studies improved the solubility (pH 7.4) and maintained high PDE10A activity compared to initial lead compound 3, with select compounds demonstrating good oral bioavailability. X-ray crystallographic studies revealed two distinct binding modes to the catalytic site of the PDE10A enzyme. An ex vivo receptor occupancy assay in rats demonstrated that this series of compounds covered the target within the striatum.


Subject(s)
Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/metabolism , Quinolines/pharmacology , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Phosphodiesterase Inhibitors/chemical synthesis , Phosphodiesterase Inhibitors/chemistry , Quinolines/chemical synthesis , Quinolines/chemistry , Solubility , Structure-Activity Relationship
5.
Oncotarget ; 5(8): 2030-43, 2014 Apr 30.
Article in English | MEDLINE | ID: mdl-24810962

ABSTRACT

While MDM2 inhibitors hold great promise as cancer therapeutics, drug resistance will likely limit their efficacy as single agents. To identify drug combinations that might circumvent resistance, we screened for agents that could synergize with MDM2 inhibition in the suppression of cell viability. We observed broad and robust synergy when combining MDM2 antagonists with either MEK or PI3K inhibitors. Synergy was not limited to cell lines harboring MAPK or PI3K pathway mutations, nor did it depend on which node of the PI3K axis was targeted. MDM2 inhibitors also synergized strongly with BH3 mimetics, BCR-ABL antagonists, and HDAC inhibitors. MDM2 inhibitor-mediated synergy with agents targeting these mechanisms was much more prevalent than previously appreciated, implying that clinical translation of these combinations could have far-reaching implications for public health. These findings highlight the importance of combinatorial drug targeting and provide a framework for the rational design of MDM2 inhibitor clinical trials.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Neoplasms/metabolism , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Signal Transduction/drug effects , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Drug Synergism , Gene Expression/drug effects , Humans
7.
J Biomol Screen ; 13(8): 737-47, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18660457

ABSTRACT

G-protein-coupled receptors (GPCRs) represent one of the largest gene families in the human genome and have long been regarded as valuable targets for small-molecule drugs. The authors describe a new functional assay that directly monitors GPCR activation. It is based on the interaction between beta-arrestin and ligand-activated GPCRs and uses enzyme fragment complementation technology. In this format, a GPCR of interest is fused to a small (approximately 4 kDa), optimized alpha fragment peptide (termed ProLink) derived from beta-galactosidase, and beta-arrestin is fused to an N-terminal deletion mutant of beta-galactosidase (termed the enzyme acceptor [EA]). Upon activation of the receptor, the beta-arrestin-EA fusion protein binds the activated GPCR. This interaction drives enzyme fragment complementation, resulting in an active beta-galactosidase enzyme, and thus GPCR activation can be determined by quantifying beta-galactosidase activity. In this report, the authors demonstrate the utility of this technology to monitor GPCR activation and validate the approach using a Galphai-coupled GPCR, somatostatin receptor 2. Potential application to high-throughput screens in both agonist and antagonist screening modes is exemplified.


Subject(s)
Arrestins/metabolism , Biological Assay/methods , Peptides/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Somatostatin/metabolism , Animals , Arrestins/genetics , Cell Line , Humans , Peptides/genetics , Receptors, G-Protein-Coupled/genetics , Receptors, Somatostatin/agonists , Receptors, Somatostatin/antagonists & inhibitors , Receptors, Somatostatin/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Reproducibility of Results , Somatostatin/genetics , Somatostatin/metabolism , beta-Arrestins , beta-Galactosidase/genetics , beta-Galactosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...