Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 10: 959624, 2022.
Article in English | MEDLINE | ID: mdl-36092694

ABSTRACT

Epithelial morphogenesis to form the semicircular canal ducts of the zebrafish inner ear depends on the production of the large glycosaminoglycan hyaluronan, which is thought to contribute to the driving force that pushes projections of epithelium into the lumen of the otic vesicle. Proteoglycans are also implicated in otic morphogenesis: several of the genes coding for proteoglycan core proteins, together with enzymes that synthesise and modify their polysaccharide chains, are expressed in the developing zebrafish inner ear. In this study, we demonstrate the highly specific localisation of chondroitin sulphate to the sites of epithelial projection outgrowth in the ear, present before any morphological deformation of the epithelium. Staining for chondroitin sulphate is also present in the otolithic membrane, whereas the otoliths are strongly positive for keratan sulphate. We show that heparan sulphate biosynthesis is critical for normal epithelial projection outgrowth, otolith growth and tethering. In the ext2 mutant ear, which has reduced heparan sulphate levels, but continues to produce hyaluronan, epithelial projections are rudimentary, and do not grow sufficiently to meet and fuse to form the pillars of tissue that normally span the otic lumen. Staining for chondroitin sulphate and expression of versican b, a chondroitin sulphate proteoglycan core protein gene, persist abnormally at high levels in the unfused projections of the ext2 mutant ear. We propose a model for wild-type epithelial projection outgrowth in which hyaluronan and proteoglycans are linked to form a hydrated gel that fills the projection core, with both classes of molecule playing essential roles in zebrafish semicircular canal morphogenesis.

2.
PLoS Comput Biol ; 17(11): e1009063, 2021 11.
Article in English | MEDLINE | ID: mdl-34723957

ABSTRACT

A common feature of morphogenesis is the formation of three-dimensional structures from the folding of two-dimensional epithelial sheets, aided by cell shape changes at the cellular-level. Changes in cell shape must be studied in the context of cell-polarised biomechanical processes within the epithelial sheet. In epithelia with highly curved surfaces, finding single-cell alignment along a biological axis can be difficult to automate in silico. We present 'Origami', a MATLAB-based image analysis pipeline to compute direction-variant cell shape features along the epithelial apico-basal axis. Our automated method accurately computed direction vectors denoting the apico-basal axis in regions with opposing curvature in synthetic epithelia and fluorescence images of zebrafish embryos. As proof of concept, we identified different cell shape signatures in the developing zebrafish inner ear, where the epithelium deforms in opposite orientations to form different structures. Origami is designed to be user-friendly and is generally applicable to fluorescence images of curved epithelia.


Subject(s)
Cell Shape/physiology , Image Processing, Computer-Assisted/statistics & numerical data , Models, Biological , Animals , Biomechanical Phenomena , Cell Polarity , Computational Biology , Computer Simulation , Ear, Inner/embryology , Epithelium/embryology , Imaging, Three-Dimensional , Microscopy, Fluorescence , Morphogenesis , Proof of Concept Study , Software , Zebrafish/embryology
3.
Cell ; 178(6): 1344-1361.e11, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31474371

ABSTRACT

Necrosis of infected macrophages constitutes a critical pathogenetic event in tuberculosis by releasing mycobacteria into the growth-permissive extracellular environment. In zebrafish infected with Mycobacterium marinum or Mycobacterium tuberculosis, excess tumor necrosis factor triggers programmed necrosis of infected macrophages through the production of mitochondrial reactive oxygen species (ROS) and the participation of cyclophilin D, a component of the mitochondrial permeability transition pore. Here, we show that this necrosis pathway is not mitochondrion-intrinsic but results from an inter-organellar circuit initiating and culminating in the mitochondrion. Mitochondrial ROS induce production of lysosomal ceramide that ultimately activates the cytosolic protein BAX. BAX promotes calcium flow from the endoplasmic reticulum into the mitochondrion through ryanodine receptors, and the resultant mitochondrial calcium overload triggers cyclophilin-D-mediated necrosis. We identify ryanodine receptors and plasma membrane L-type calcium channels as druggable targets to intercept mitochondrial calcium overload and necrosis of mycobacterium-infected zebrafish and human macrophages.


Subject(s)
Macrophages/microbiology , Macrophages/pathology , Mitochondria/metabolism , Mycobacterium Infections, Nontuberculous/metabolism , Tuberculosis/immunology , Tuberculosis/pathology , Tumor Necrosis Factor-alpha/metabolism , Animals , Apoptosis , Calcium/metabolism , Endoplasmic Reticulum/microbiology , Humans , Lysosomes/microbiology , Membrane Potential, Mitochondrial , Mycobacterium Infections, Nontuberculous/pathology , Mycobacterium marinum , Mycobacterium tuberculosis , Necrosis , Reactive Oxygen Species/metabolism , THP-1 Cells , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...