Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(10)2020 May 25.
Article in English | MEDLINE | ID: mdl-32466325

ABSTRACT

The terahertz spectrum provides tremendous opportunities for broadband gas-phase spectroscopy, as numerous molecules exhibit strong fundamental resonances in the THz frequency range. However, cutting-edge THz gas-phase spectrometer require cumbersome multi-pass gas cells to reach sufficient sensitivity for trace level gas detection. Here, we report on the first demonstration of a THz gas-phase spectrometer using a sub-wavelength thick ultrahigh-Q THz disc microresonator. Leveraging the microresonator's ultrahigh quality factor in excess of 120,000 as well as the intrinsically large evanescent field, allows for the implementation of a very compact spectrometer without the need for complex multi-pass gas cells. Water vapour concentrations as low as 4 parts per million at atmospheric conditions have been readily detected in proof-of-concept experiments.

2.
Opt Lett ; 44(9): 2220-2223, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31042188

ABSTRACT

We report on the coupling of a free-space Gaussian beam to symmetric high-quality (Q) whispering-gallery mode resonators (WGMRs) for terahertz (THz) radiation. We achieve very high excitation efficiencies up to 50% to THz WGMs with a Q-factor of 1.5×104 at 0.7 THz. The high coupling efficiencies have been realized by leveraging a Gaussian beam with a nearly diffraction-limited focal spot, as well as readily available low-loss, high-index silicon spheres with diameters comparable to the wavelength. The results convincingly underline the viability of free-space coupling in the THz frequency range.

3.
Opt Lett ; 44(6): 1319-1322, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30874640

ABSTRACT

The vast majority of resonant systems show a red-shift for the resonance frequency when a perturbation, e.g., losses, is introduced to the system. In contrast, here we report for the first time, to the best of our knowledge, the experimental demonstration of both red- and anomalous blue-shifting of whispering-gallery modes (WGMs) using dielectric and metallic substrates. The maximum blue-shift is more than three times as large as the expected red-shift, proving that the anomalous blue-shift is more than a peculiar curiosity. The experiments are performed in the terahertz frequency range with coherent continuous-wave spectroscopy. The results establish dielectric and metallic tuning as a novel and viable approach to tune high-quality WGMs and provide valuable insights into the anomalous blue-shift of WGM cavity systems. The tuning capabilities for these compact monolithic resonators are of significant interest for fundamental science and technological applications alike.

4.
Opt Express ; 26(24): 31190-31198, 2018 Nov 26.
Article in English | MEDLINE | ID: mdl-30650708

ABSTRACT

We report on prism coupling of high-quality (high-Q) terahertz (THz) whispering-gallery modes (WGMs) in spherical high resistivity float zone grown silicon (HRFZ-Si) resonators over two octaves from 0.2 THz to 1.1 THz. The WGMs are excited using a HRFZ-Si prism and show unprecedented quality factors of up to 2.2 × 104. A detailed discussion of the phase-and mode-matching criteria of the prism coupling scheme implemented in the continuous wave THz spectroscopy system is presented. The results provide numerous opportunities for passive ultra-broadband high-Q devices operating in the THz frequency range.

SELECTION OF CITATIONS
SEARCH DETAIL
...