Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
FASEB J ; 38(5): e23518, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38441532

ABSTRACT

NUDC (nuclear distribution protein C) is a mitotic protein involved in nuclear migration and cytokinesis across species. Considered a cytoplasmic dynein (henceforth dynein) cofactor, NUDC was shown to associate with the dynein motor complex during neuronal migration. NUDC is also expressed in postmitotic vertebrate rod photoreceptors where its function is unknown. Here, we examined the role of NUDC in postmitotic rod photoreceptors by studying the consequences of a conditional NUDC knockout in mouse rods (rNudC-/- ). Loss of NUDC in rods led to complete photoreceptor cell death at 6 weeks of age. By 3 weeks of age, rNudC-/- function was diminished, and rhodopsin and mitochondria were mislocalized, consistent with dynein inhibition. Levels of outer segment proteins were reduced, but LIS1 (lissencephaly protein 1), a well-characterized dynein cofactor, was unaffected. Transmission electron microscopy revealed ultrastructural defects within the rods of rNudC-/- by 3 weeks of age. We investigated whether NUDC interacts with the actin modulator cofilin 1 (CFL1) and found that in rods, CFL1 is localized in close proximity to NUDC. In addition to its potential role in dynein trafficking within rods, loss of NUDC also resulted in increased levels of phosphorylated CFL1 (pCFL1), which would purportedly prevent depolymerization of actin. The absence of NUDC also induced an inflammatory response in Müller glia and microglia across the neural retina by 3 weeks of age. Taken together, our data illustrate the critical role of NUDC in actin cytoskeletal maintenance and dynein-mediated protein trafficking in a postmitotic rod photoreceptor.


Subject(s)
Actins , Dyneins , Animals , Mice , Biological Transport , Cell Death , Dyneins/genetics , Retinal Rod Photoreceptor Cells
2.
Prog Retin Eye Res ; 100: 101247, 2024 May.
Article in English | MEDLINE | ID: mdl-38365085

ABSTRACT

Modeling complex eye diseases like age-related macular degeneration (AMD) and glaucoma poses significant challenges, since these conditions depend highly on age-related changes that occur over several decades, with many contributing factors remaining unknown. Although both diseases exhibit a relatively high heritability of >50%, a large proportion of individuals carrying AMD- or glaucoma-associated genetic risk variants will never develop these diseases. Furthermore, several environmental and lifestyle factors contribute to and modulate the pathogenesis and progression of AMD and glaucoma. Several strategies replicate the impact of genetic risk variants, pathobiological pathways and environmental and lifestyle factors in AMD and glaucoma in mice and other species. In this review we will primarily discuss the most commonly available mouse models, which have and will likely continue to improve our understanding of the pathobiology of age-related eye diseases. Uncertainties persist whether small animal models can truly recapitulate disease progression and vision loss in patients, raising doubts regarding their usefulness when testing novel gene or drug therapies. We will elaborate on concerns that relate to shorter lifespan, body size and allometries, lack of macula and a true lamina cribrosa, as well as absence and sequence disparities of certain genes and differences in their chromosomal location in mice. Since biological, rather than chronological, age likely predisposes an organism for both glaucoma and AMD, more rapidly aging organisms like small rodents may open up possibilities that will make research of these diseases more timely and financially feasible. On the other hand, due to the above-mentioned anatomical and physiological features, as well as pharmacokinetic and -dynamic differences small animal models are not ideal to study the natural progression of vision loss or the efficacy and safety of novel therapies. In this context, we will also discuss the advantages and pitfalls of alternative models that include larger species, such as non-human primates and rabbits, patient-derived retinal organoids, and human organ donor eyes.


Subject(s)
Disease Models, Animal , Macular Degeneration , Animals , Humans , Macular Degeneration/genetics , Macular Degeneration/physiopathology , Mice , Aging/physiology , Glaucoma/physiopathology , Glaucoma/genetics , Disease Progression
3.
bioRxiv ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38076848

ABSTRACT

NUDC ( nu clear d istribution protein C) is a mitotic protein involved in nuclear migration and cytokinesis across species. Considered a cytoplasmic dynein (henceforth dynein) cofactor, NUDC was shown to associate with the dynein motor complex during neuronal migration. NUDC is also expressed in postmitotic vertebrate rod photoreceptors where its function is unknown. Here, we examined the role of NUDC in postmitotic rod photoreceptors by studying the consequences of a conditional NUDC knockout in mouse rods (r NudC -/- ). Loss of NUDC in rods led to complete photoreceptor cell death at six weeks of age. By 3 weeks of age, r NudC -/- function was diminished, and rhodopsin and mitochondria were mislocalized, consistent with dynein inhibition. Levels of outer segment proteins were reduced, but LIS1 (lissencephaly protein 1), a well-characterized dynein cofactor, was unaffected. Transmission electron microscopy revealed ultrastructural defects within the rods of r NudC -/- by 3 weeks of age. We investigated whether NUDC interacts with the actin modulator cofilin 1 (CFL1) and found that in rods, CFL1 is localized in close proximity to NUDC. In addition to its potential role in dynein trafficking within rods, loss of NUDC also resulted in increased levels of phosphorylated CFL1 (pCFL1), which would purportedly prevent depolymerization of actin. Absence of NUDC also induced an inflammatory response in Müller glia and microglia across the neural retina by 3 weeks of age. Taken together, our data illustrate the critical role of NUDC in actin cytoskeletal maintenance and dynein-mediated protein trafficking in a postmitotic rod photoreceptor. Significance Statement: Nuclear distribution protein C (NUDC) has been studied extensively as an essential protein for mitotic cell division. In this study, we discovered its expression and role in the postmitotic rod photoreceptor cell. In the absence of NUDC in mouse rods, we detected functional loss, protein mislocalization, and rapid retinal degeneration consistent with dynein inactivation. In the early phase of retinal degeneration, we observed ultrastructural defects and an upregulation of inflammatory markers suggesting additional, dynein-independent functions of NUDC.

4.
Redox Biol ; 66: 102869, 2023 10.
Article in English | MEDLINE | ID: mdl-37677999

ABSTRACT

The lens proteome undergoes dramatic composition changes during development and maturation. A defective developmental process leads to congenital cataracts that account for about 30% of cases of childhood blindness. Gene mutations are associated with approximately 50% of early-onset forms of lens opacity, with the remainder being of unknown etiology. To gain a better understanding of cataractogenesis, we utilized a transgenic mouse model expressing a mutant ubiquitin protein in the lens (K6W-Ub) that recapitulates most of the early pathological changes seen in human congenital cataracts. We performed mass spectrometry-based tandem-mass-tag quantitative proteomics in E15, P1, and P30 control or K6W-Ub lenses. Our analysis identified targets that are required for early normal differentiation steps and altered in cataractous lenses, particularly metabolic pathways involving glutathione and amino acids. Computational molecular phenotyping revealed that glutathione and taurine were spatially altered in the K6W-Ub cataractous lens. High-performance liquid chromatography revealed that both taurine and the ratio of reduced glutathione to oxidized glutathione, two indicators of redox status, were differentially compromised in lens biology. In sum, our research documents that dynamic proteome changes in a mouse model of congenital cataracts impact redox biology in lens. Our findings shed light on the molecular mechanisms associated with congenital cataracts and point out that unbalanced redox status due to reduced levels of taurine and glutathione, metabolites already linked to age-related cataract, could be a major underlying mechanism behind lens opacities that appear early in life.


Subject(s)
Cataract , Proteome , Humans , Animals , Mice , Glutathione , Disease Models, Animal , Mice, Transgenic , Mutant Proteins , Oxidation-Reduction , Taurine , Cataract/genetics
5.
Exp Eye Res ; 235: 109630, 2023 10.
Article in English | MEDLINE | ID: mdl-37625575

ABSTRACT

CRX is a transcription factor essential for normal photoreceptor development and survival. The CRXRdy cat has a naturally occurring truncating mutation in CRX and is a large animal model for dominant Leber congenital amaurosis. This study investigated retinal remodeling that occurs as photoreceptors degenerate. CRXRdy/+ cats from 6 weeks to 10 years of age were investigated. In vivo structural changes of retinas were analyzed by fundus examination, confocal scanning laser ophthalmoscopy and spectral domain optical coherence tomography. Histologic analyses included immunohistochemistry for computational molecular phenotyping with macromolecules and small molecules. Affected cats had a cone-led photoreceptor degeneration starting in the area centralis. Initially there was preservation of inner retinal cells such as bipolar, amacrine and horizontal cells but with time migration of the deafferented neurons occurred. Early in the process of degeneration glial activation occurs ultimately resulting in formation of a glial seal. With progression the macula-equivalent area centralis developed severe atrophy including loss of retinal pigmentary epithelium. Microneuroma formation occured in advanced stages as more marked retinal remodeling occurred. This study indicates that retinal degeneration in the CrxRdy/+ cat retina follows the progressive, phased revision of retina that have been previously described for retinal remodeling. These findings suggest that therapy dependent on targeting inner retinal cells may be useful in young adults with preserved inner retinas prior to advanced stages of retinal remodeling and neuronal cell loss.


Subject(s)
Leber Congenital Amaurosis , Retinal Degeneration , Animals , Retina/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retinal Degeneration/metabolism , Leber Congenital Amaurosis/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism
6.
Adv Exp Med Biol ; 1415: 297-301, 2023.
Article in English | MEDLINE | ID: mdl-37440048

ABSTRACT

Over the past decade, the field of retinal connectomics has made huge strides in describing the precise topologies underlying retinal visual processing. The same techniques that allowed these advancements are also applicable to understanding the progression of rewiring in retinal remodeling: retinal pathoconnectomics. Pathoconnectomics is unique in its unbiased approach to understanding the impacts of deafferentation on the remaining network components and identifying aberrant connectivities leading to visual processing defects. Pathoconnectomics also paves the way for identifying underlying rules of rewiring that may be recapitulated throughout the nervous system in other neurodegenerative diseases.


Subject(s)
Retina , Retinal Degeneration , Humans , Retina/physiology
7.
Article in English | MEDLINE | ID: mdl-37186528

ABSTRACT

In retinal degenerative diseases, such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD), the photoreceptors become stressed and start to degenerate in the early stages of the disease. Retinal prosthetic devices have been developed to restore vision in patients by applying electrical stimulation to the surviving retinal cells. However, these devices provide limited visual perception as the therapeutic interventions are generally considered in the later stages of the disease when only inner retinal layer cells are left. A potential treatment option for retinal degenerative diseases in the early stages can be stimulating bipolar cells, which receive presynaptic signals from photoreceptors. In this work, we constructed computational models of healthy and degenerated (both ON and OFF-type) cone bipolar cells (CBCs) with realistic morphologies extracted from connectomes of the healthy and early-stage degenerated rabbit retina. We examined these cells' membrane potential and axon terminal calcium current differences when subjected to electrical stimulation. In addition, we investigated how differently healthy and degenerated cells behave with respect to various stimulation parameters, including pulse duration and cells' distance from the stimulating electrode. The results suggested that regardless of the position of the OFF CBCs in the retina model, there is not a significant difference between the membrane potential of healthy and degenerate cells when electrically stimulated. However, the healthy ON CBC axon terminal membrane potential rising time-constant is shorter (0.29 ± 0.03 ms) than the degenerated cells (0.8 ± 0.07 ms). Moreover, the ionic calcium channels at the axon terminals of the cells have a higher concentration and higher current in degenerated cells (32.24 ± 6.12 pA) than the healthy cells (13.64 ± 2.88 pA) independently of the cell's position.


Subject(s)
Retinal Degeneration , Retinitis Pigmentosa , Animals , Rabbits , Retinal Degeneration/therapy , Retina/physiology , Retinitis Pigmentosa/therapy , Axons/physiology , Electric Stimulation/methods
8.
Cell Rep ; 42(1): 112006, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36680773

ABSTRACT

Neurons make converging and diverging synaptic connections with distinct partner types. Whether synapses involving separate partners demonstrate similar or distinct structural motifs is not yet well understood. We thus used serial electron microscopy in mouse retina to map output synapses of cone bipolar cells (CBCs) and compare their structural arrangements across bipolar types and postsynaptic partners. Three presynaptic configurations emerge-single-ribbon, ribbonless, and multiribbon synapses. Each CBC type exploits these arrangements in a unique combination, a feature also found among rabbit ON CBCs. Though most synapses are dyads, monads and triads are also seen. Altogether, mouse CBCs exhibit at least six motifs, and each CBC type uses these in a stereotypic pattern. Moreover, synapses between CBCs and particular partner types appear biased toward certain motifs. Our observations reveal synaptic strategies that diversify the output within and across CBC types, potentially shaping the distinct functions of retinal microcircuits.


Subject(s)
Interneurons , Retina , Animals , Mice , Rabbits , Retina/physiology , Retinal Bipolar Cells , Synapses , Microscopy, Electron
9.
Nature ; 606(7913): 351-357, 2022 06.
Article in English | MEDLINE | ID: mdl-35545677

ABSTRACT

Death is defined as the irreversible cessation of circulatory, respiratory or brain activity. Many peripheral human organs can be transplanted from deceased donors using protocols to optimize viability. However, tissues from the central nervous system rapidly lose viability after circulation ceases1,2, impeding their potential for transplantation. The time course and mechanisms causing neuronal death and the potential for revival remain poorly defined. Here, using the retina as a model of the central nervous system, we systemically examine the kinetics of death and neuronal revival. We demonstrate the swift decline of neuronal signalling and identify conditions for reviving synchronous in vivo-like trans-synaptic transmission in postmortem mouse and human retina. We measure light-evoked responses in human macular photoreceptors in eyes removed up to 5 h after death and identify modifiable factors that drive reversible and irreversible loss of light signalling after death. Finally, we quantify the rate-limiting deactivation reaction of phototransduction, a model G protein signalling cascade, in peripheral and macular human and macaque retina. Our approach will have broad applications and impact by enabling transformative studies in the human central nervous system, raising questions about the irreversibility of neuronal cell death, and providing new avenues for visual rehabilitation.


Subject(s)
Light Signal Transduction , Neurological Rehabilitation , Postmortem Changes , Retina , Animals , Autopsy , Cell Death/radiation effects , Central Nervous System/radiation effects , Humans , Light Signal Transduction/radiation effects , Macaca , Mice , Retina/metabolism , Retina/radiation effects , Time Factors
10.
Front Neuroanat ; 16: 1099348, 2022.
Article in English | MEDLINE | ID: mdl-36620193

ABSTRACT

The retinal degenerative diseases retinitis pigmentosa and age-related macular degeneration are a leading cause of irreversible vision loss. Both present with progressive photoreceptor degeneration that is further complicated by processes of retinal remodeling. In this perspective, we discuss the current state of the field of retinal remodeling and its implications for vision-restoring therapeutics currently in development. Here, we discuss the challenges and pitfalls retinal remodeling poses for each therapeutic strategy under the premise that understanding the features of retinal remodeling in totality will provide a basic framework with which therapeutics can interface. Additionally, we discuss the potential for approaching therapeutics using a combined strategy of using diffusible molecules in tandem with other vision-restoring therapeutics. We end by discussing the potential of the retina and retinal remodeling as a model system for more broadly understanding the progression of neurodegeneration across the central nervous system.

11.
Exp Eye Res ; 212: 108755, 2021 11.
Article in English | MEDLINE | ID: mdl-34487725

ABSTRACT

PURPOSE: Age-related macular degeneration (AMD), the leading cause of blindness in western populations, is associated with an overactive complement system, and an increase in circulating antibodies against certain epitopes, including elastin. As loss of the elastin layer of Bruch's membrane (BrM) has been reported in aging and AMD, we previously showed that immunization with elastin peptide oxidatively modified by cigarette smoke (ox-elastin), exacerbated ocular pathology in the smoke-induced ocular pathology (SIOP) model. Here we asked whether ox-elastin peptide-based immunotherapy (PIT) ameliorates damage. METHODS: C57BL/6J mice were injected with ox-elastin peptide at two doses via weekly subcutaneous administration, while exposed to cigarette smoke for 6 months. FcγR-/- and uninjected C57BL/6J mice served as controls. Retinal morphology was assessed by electron microscopy, and complement activation, antibody deposition and mechanisms of immunological tolerance were assessed by Western blotting and ELISA. RESULTS: Elimination of Fcγ receptors, preventing antigen/antibody-dependent cytotoxicity, protected against SIOP. Mice receiving PIT with low dose ox-elastin (LD-PIT) exhibited reduced humoral immunity, reduced complement activation and IgG/IgM deposition in the RPE/choroid, and largely a preserved BrM. While there is no direct evidence of ox-elastin pathogenicity, LD-PIT reduced IFNγ and increased IL-4 within RPE/choroid. High dose PIT was not protective. CONCLUSIONS: These data further support ox-elastin role in ocular damage in part via elastin-specific antibodies, and support the corollary that PIT with ox-elastin attenuates ocular pathology. Overall, damage is associated with complement activation, antibody-dependent cell-mediated cytotoxicity, and altered cytokine signature.


Subject(s)
Cigarette Smoking/adverse effects , Elastin/immunology , Immunotherapy/methods , Macular Degeneration/therapy , Peptides/therapeutic use , Receptors, IgG/drug effects , Smoke/adverse effects , Animals , Complement Activation , Disease Models, Animal , Elastin/metabolism , Macular Degeneration/chemically induced , Macular Degeneration/diagnosis , Mice , Mice, Inbred C57BL , Microscopy, Electron , Peptides/immunology , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/ultrastructure
12.
Invest Ophthalmol Vis Sci ; 62(9): 15, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34241625

ABSTRACT

Purpose: Primary cilia are conserved organelles found in polarized cells within the eye that regulate cell growth, migration, and differentiation. Although the role of cilia in photoreceptors is well-studied, the formation of cilia in other retinal cell types has received little attention. In this study, we examined the ciliary profile focused on the inner nuclear layer of retinas in mice and rhesus macaque primates. Methods: Retinal sections or flatmounts from Arl13b-Cetn2 tg transgenic mice were immunostained for cell markers (Pax6, Sox9, Chx10, Calbindin, Calretinin, ChaT, GAD67, Prox1, TH, and vGluT3) and analyzed by confocal microscopy. Primate retinal sections were immunostained for ciliary and cell markers (Pax6 and Arl13b). Optical coherence tomography (OCT) and ERGs were used to assess visual function of Vift88 mice. Results: During different stages of mouse postnatal eye development, we found that cilia are present in Pax6-positive amacrine cells, which were also observed in primate retinas. The cilia of subtypes of amacrine cells in mice were shown by immunostaining and electron microscopy. We also removed primary cilia from vGluT3 amacrine cells in mouse and found no significant vision defects. In addition, cilia were present in the outer limiting membrane, suggesting that a population of Müller glial cells forms cilia. Conclusions: We report that several subpopulations of amacrine cells in inner nuclear layers of the retina form cilia during early retinal development in mice and primates.


Subject(s)
Amacrine Cells/ultrastructure , Retina/growth & development , Animals , Chickens , Cilia , Electroretinography , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Electron , Models, Animal , Rabbits , Retina/ultrastructure , Tomography, Optical Coherence/methods
13.
Exp Eye Res ; 207: 108554, 2021 06.
Article in English | MEDLINE | ID: mdl-33794197

ABSTRACT

Retinal degenerative diseases, such as retinitis pigmentosa, are generally thought to initiate with the loss of photoreceptors, though recent work suggests that plasticity and remodeling occurs prior to photoreceptor cell loss. This degeneration subsequently leads to death of other retinal neurons, creating functional alterations and extensive remodeling of retinal networks. Retinal prosthetic devices stimulate the surviving retinal cells by applying external current using implanted electrodes. Although these devices restore partial vision, the quality of restored vision is limited. Further knowledge about the precise changes in degenerated retina as the disease progresses is essential to understand how current flows in retinas undergoing degenerative disease and to improve the performance of retinal prostheses. We developed computational models that describe current flow from rod photoreceptors to rod bipolar cells (RodBCs) in the healthy and early-stage degenerated retina. Morphologically accurate models of retinal cells with their synapses are constructed based on retinal connectome datasets, created using serial section transmission electron microscopy (TEM) images of 70 nm-thick slices of either healthy (RC1) or early-stage degenerated (RPC1) rabbit retina. The passive membrane and active ion currents of each cell are implemented using conductance-based models in the Neuron simulation environment. In response to photocurrent input at rod photoreceptors, the simulated membrane potential at RodBCs in early degenerate tissue is approximately 10-20 mV lower than that of RodBCs of that observed in wild type retina. Results presented here suggest that although RodBCs in RPC1 show early, altered morphology compared to RC1, the lower membrane potential is primarily a consequence of reduced rod photoreceptor input to RodBCs in the degenerated retina. Frequency response and step input analyses suggest that individual cell responses of RodBCs in either healthy or early-degenerated retina, prior to substantial photoreceptor cell loss, do not differ significantly.


Subject(s)
Computer Simulation , Retina/physiology , Retinal Bipolar Cells/physiology , Retinal Degeneration/physiopathology , Retinal Rod Photoreceptor Cells/physiology , Signal Transduction/physiology , Animals , Computational Biology , Connectome , Neuronal Plasticity/physiology , Rabbits , Synapses/physiology
14.
Exp Eye Res ; 207: 108583, 2021 06.
Article in English | MEDLINE | ID: mdl-33878326

ABSTRACT

PURPOSE: Age-related macular degeneration is a slowly progressing disease. Studies have tied disease risk to an overactive complement system. We have previously demonstrated that pathology in two mouse models, the choroidal neovascularization (CNV) model and the smoke-induced ocular pathology (SIOP) model, can be reduced by specifically inhibiting the alternative complement pathway (AP). Here we report on the development of a novel injury-site targeted inhibitor of the alternative pathway, and its characterization in models of retinal degeneration. METHODS: Expression of the danger associated molecular pattern, a modified annexin IV, in injured ARPE-19 cells was confirmed by immunohistochemistry and complementation assays using B4 IgM mAb. Subsequently, a construct was prepared consisting of B4 single chain antibody (scFv) linked to a fragment of the alternative pathway inhibitor, fH (B4-scFv-fH). ARPE-19 cells stably expressing B4-scFv-fH were microencapsulated and administered intravitreally or subcutaneously into C57BL/6 J mice, followed by CNV induction or smoke exposure. Progression of CNV was analyzed using optical coherence tomography, and SIOP using structure-function analyses. B4-scFv-fH targeting and AP specificity was assessed by Western blot and binding experiments. RESULTS: B4-scFv-fH was secreted from encapsulated RPE and inhibited complement in RPE monolayers. B4-scFv-fH capsules reduced CNV and SIOP, and western blotting for breakdown products of C3α, IgM and IgG confirmed a reduction in complement activation and antibody binding in RPE/choroid. CONCLUSIONS: Data supports a role for natural antibodies and neoepitope expression in ocular disease, and describes a novel strategy to target AP-specific complement inhibition to diseased tissue in the eye. PRECIS: AMD risk is tied to an overactive complement system, and ocular injury is reduced by alternative pathway (AP) inhibition in experimental models. We developed a novel inhibitor of the AP that targets an injury-specific danger associated molecular pattern, and characterized it in disease models.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Complement Inactivating Agents/therapeutic use , Complement Pathway, Alternative/drug effects , Disease Models, Animal , Immunoglobulin M/immunology , Retinal Degeneration/therapy , Retinal Pigment Epithelium/metabolism , Animals , Blotting, Western , Cell Line , Cell- and Tissue-Based Therapy/methods , Choroidal Neovascularization/diagnostic imaging , Choroidal Neovascularization/immunology , Choroidal Neovascularization/therapy , Complement C3/antagonists & inhibitors , Complement C3/genetics , Drug Delivery Systems , Male , Mice , Mice, Inbred C57BL , Recombinant Fusion Proteins , Retinal Degeneration/diagnostic imaging , Retinal Degeneration/immunology , Tomography, Optical Coherence , Transfection
15.
Exp Eye Res ; 199: 108196, 2020 10.
Article in English | MEDLINE | ID: mdl-32810483

ABSTRACT

Connectomics has demonstrated that synaptic networks and their topologies are precise and directly correlate with physiology and behavior. The next extension of connectomics is pathoconnectomics: to map neural network synaptology and circuit topologies corrupted by neurological disease in order to identify robust targets for therapeutics. In this report, we characterize a pathoconnectome of early retinal degeneration. This pathoconnectome was generated using serial section transmission electron microscopy to achieve an ultrastructural connectome with 2.18nm/px resolution for accurate identification of all chemical and gap junctional synapses. We observe aberrant connectivity in the rod-network pathway and novel synaptic connections deriving from neurite sprouting. These observations reveal principles of neuron responses to the loss of network components and can be extended to other neurodegenerative diseases.


Subject(s)
Connectome/methods , Retinal Degeneration/diagnosis , Retinal Rod Photoreceptor Cells/pathology , Amacrine Cells/metabolism , Amacrine Cells/pathology , Animals , Disease Models, Animal , Gap Junctions , Rabbits , Retinal Degeneration/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Synapses/metabolism
16.
J Neurosci ; 40(23): 4483-4511, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32332119

ABSTRACT

Gap junctions are ubiquitous throughout the nervous system, mediating critical signal transmission and integration, as well as emergent network properties. In mammalian retina, gap junctions within the Aii amacrine cell-ON cone bipolar cell (CBC) network are essential for night vision, modulation of day vision, and contribute to visual impairment in retinal degenerations, yet neither the extended network topology nor its conservation is well established. Here, we map the network contribution of gap junctions using a high-resolution connectomics dataset of an adult female rabbit retina. Gap junctions are prominent synaptic components of ON CBC classes, constituting 5%-25% of all axonal synaptic contacts. Many of these mediate canonical transfer of rod signals from Aii cells to ON CBCs for night vision, and we find that the uneven distribution of Aii signals to ON CBCs is conserved in rabbit, including one class entirely lacking direct Aii coupling. However, the majority of gap junctions formed by ON CBCs unexpectedly occur between ON CBCs, rather than with Aii cells. Such coupling is extensive, creating an interconnected network with numerous lateral paths both within, and particularly across, these parallel processing streams. Coupling patterns are precise with ON CBCs accepting and rejecting unique combinations of partnerships according to robust rulesets. Coupling specificity extends to both size and spatial topologies, thereby rivaling the synaptic specificity of chemical synapses. These ON CBC coupling motifs dramatically extend the coupled Aii-ON CBC network, with implications for signal flow in both scotopic and photopic retinal networks during visual processing and disease.SIGNIFICANCE STATEMENT Electrical synapses mediated by gap junctions are fundamental components of neural networks. In retina, coupling within the Aii-ON CBC network shapes visual processing in both the scotopic and photopic networks. In retinal degenerations, these same gap junctions mediate oscillatory activity that contributes to visual impairment. Here, we use high-resolution connectomics strategies to identify gap junctions and cellular partnerships. We describe novel, pervasive motifs both within and across classes of ON CBCs that dramatically extend the Aii-ON CBC network. These motifs are highly specific with implications for both signal processing within the retina and therapeutic interventions for blinding conditions. These findings highlight the underappreciated contribution of coupling motifs in retinal circuitry and the necessity of their detection in connectomics studies.


Subject(s)
Gap Junctions/physiology , Gap Junctions/ultrastructure , Nerve Net/physiology , Retina/physiology , Retina/ultrastructure , Animals , Female , Rabbits
17.
Trends Endocrinol Metab ; 31(4): 320-329, 2020 04.
Article in English | MEDLINE | ID: mdl-32187524

ABSTRACT

Müller cells are glia that play important regulatory roles in retinal metabolism. These roles have been evolutionarily conserved across at least 300 million years. Müller cells have a tightly locked metabolic signature in the healthy retina, which rapidly degrades in response to insult and disease. This variation in metabolic signature occurs in a chaotic fashion, involving some central metabolic pathways. The cause of this divergence of Müller cells, from a single class with a unique metabolic signature to numerous separable metabolic classes, is currently unknown and illuminates potential alternative metabolic pathways that may be revealed in disease. Understanding the impacts of this heterogeneity on degenerate retinas and the implications for the metabolic support of surrounding neurons will be critical to long-term integration of retinal therapeutics for the restoration of visual perception following photoreceptor degeneration.


Subject(s)
Ependymoglial Cells/metabolism , Glutamate-Ammonia Ligase/metabolism , Metabolome , Retinal Degeneration/metabolism , Humans
18.
Development ; 147(4)2020 02 21.
Article in English | MEDLINE | ID: mdl-31988185

ABSTRACT

Organogenesis requires precise interactions between a developing tissue and its environment. In vertebrates, the developing eye is surrounded by a complex extracellular matrix as well as multiple mesenchymal cell populations. Disruptions to either the matrix or periocular mesenchyme can cause defects in early eye development, yet in many cases the underlying mechanism is unknown. Here, using multidimensional imaging and computational analyses in zebrafish, we establish that cell movements in the developing optic cup require neural crest. Ultrastructural analysis reveals that basement membrane formation around the developing eye is also dependent on neural crest, but only specifically around the retinal pigment epithelium. Neural crest cells produce the extracellular matrix protein nidogen: impairing nidogen function disrupts eye development, and, strikingly, expression of nidogen in the absence of neural crest partially restores optic cup morphogenesis. These results demonstrate that eye formation is regulated in part by extrinsic control of extracellular matrix assembly.This article has an associated 'The people behind the papers' interview.


Subject(s)
Basement Membrane/embryology , Eye/embryology , Neural Crest/embryology , Alleles , Animals , CRISPR-Cas Systems , Calcium-Binding Proteins/physiology , Cell Movement , Electrophoresis, Capillary , Extracellular Matrix/physiology , Extracellular Matrix Proteins/physiology , Forkhead Transcription Factors/physiology , Gene Expression Regulation, Developmental , Genotype , Mesoderm/embryology , Microscopy, Electron, Transmission , Morphogenesis , Mutation , Neural Crest/cytology , Organogenesis , Retina/embryology , Retinal Pigment Epithelium/embryology , Signal Transduction , Transcription Factor AP-2/physiology , Zebrafish , Zebrafish Proteins/physiology
19.
Clin Neurophysiol ; 131(6): 1383-1398, 2020 06.
Article in English | MEDLINE | ID: mdl-31866339

ABSTRACT

Retinal prostheses are designed to restore a basic sense of sight to people with profound vision loss. They require a relatively intact posterior visual pathway (optic nerve, lateral geniculate nucleus and visual cortex). Retinal implants are options for people with severe stages of retinal degenerative disease such as retinitis pigmentosa and age-related macular degeneration. There have now been three regulatory-approved retinal prostheses. Over five hundred patients have been implanted globally over the past 15 years. Devices generally provide an improved ability to localize high-contrast objects, navigate, and perform basic orientation tasks. Adverse events have included conjunctival erosion, retinal detachment, loss of light perception, and the need for revision surgery, but are rare. There are also specific device risks, including overstimulation (which could cause damage to the retina) or delamination of implanted components, but these are very unlikely. Current challenges include how to improve visual acuity, enlarge the field-of-view, and reduce a complex visual scene to its most salient components through image processing. This review encompasses the work of over 40 individual research groups who have built devices, developed stimulation strategies, or investigated the basic physiology underpinning retinal prostheses. Current technologies are summarized, along with future challenges that face the field.


Subject(s)
Retinitis Pigmentosa/surgery , Vision Disorders/surgery , Visual Prosthesis , Humans , Treatment Outcome
20.
Adv Exp Med Biol ; 1185: 365-370, 2019.
Article in English | MEDLINE | ID: mdl-31884639

ABSTRACT

Glia play important roles in neural function, including but not limited to amino acid recycling, ion homeostasis, glucose metabolism, and waste removal. During retinal degeneration and subsequent retinal remodeling, Müller cells (MCs) are the first cells to show metabolic and morphological alterations in response to stress. Metabolic alterations in MCs chaotically progress in retina undergoing photoreceptor degeneration; however, what relationship these alterations have with neuronal stress, synapse maintenance, or glia-glia interactions is currently unknown. The work described here reconstructs a MC from a pathoconnectome of early retinal remodeling retinal pathoconnectome 1 (RPC1) and explores relationships between MC structural and metabolic phenotypes in the context of neighboring neurons and glia. Here we find variations in intensity of osmication inter- and intracellularly, variation in small molecule metabolic content of MCs, as well as morphological alterations of glial endfeet. RPC1 provides a framework to analyze these relationships in early retinal remodeling through ultrastructural reconstructions of both neurons and glia. These reconstructions, informed by quantitative metabolite labeling via computational molecular phenotyping (CMP), allow us to evaluate neural-glial interactions in early retinal degeneration with unprecedented resolution and sensitivity.


Subject(s)
Connectome , Ependymoglial Cells/pathology , Neurons/cytology , Retinal Degeneration/physiopathology , Humans , Retina/cytology , Retina/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...