Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38464264

ABSTRACT

Chronic kidney disease (CKD) is associated with renal metabolic disturbances, including impaired fatty acid oxidation (FAO). Nicotinamide adenine dinucleotide (NAD + ) is a small molecule that participates in hundreds of metabolism-related reactions. NAD + levels are decreased in CKD, and NAD + supplementation is protective. However, both the mechanism of how NAD + supplementation protects from CKD, as well as the cell types most responsible, are poorly understood. Using a mouse model of Alport syndrome, we show that nicotinamide riboside (NR), an NAD + precursor, stimulates renal peroxisome proliferator-activated receptor α signaling and restores FAO in the proximal tubules, thereby protecting from CKD in both sexes. Bulk RNA-sequencing shows that renal metabolic pathways are impaired in Alport mice and dramatically activated by NR in both sexes. These transcriptional changes are confirmed by orthogonal imaging techniques and biochemical assays. Single nuclei RNA-sequencing and spatial transcriptomics, both the first of their kind from Alport mice, show that NAD + supplementation restores FAO in the proximal tubules with minimal effects on the podocytes. Finally, we also report, for the first time, sex differences at the transcriptional level in this Alport model. Male Alport mice had more severe inflammation and fibrosis than female mice at the transcriptional level. In summary, the data herein identify both the protective mechanism and location of NAD + supplementation in this model of CKD.

2.
Res Sq ; 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37790455

ABSTRACT

Traditional methodologies for fibrosis quantification involve histological measurements, staining with Masson's trichrome and picrosirius red (PSR), and label-free imaging using second harmonic generation (SHG). The difficulty of label-free cardiac SHG imaging is that both collagen (i.e., collagen 1 fibrils) and myosin are harmonophores that generate SHG signals, and specific identification of either collagen or myosin is difficult to achieve. Here we present an alternate method of quantifying cardiac fibrosis by using PSR staining followed by multiphoton excitation fluorescence imaging. Our data from the deoxycorticosterone model of cardiac fibrosis shows that this imaging method and downstream analyses, including background correction, are robust and easy to perform. These advantages are due to the high signal-to-noise ratio provided by PSR in areas of collagen fibers. Furthermore, the hyperspectral and fluorescence lifetime information of PSR-stained area of fibrosis shows better quantification can eventually be obtained using more complex instrumentation.

3.
Am J Physiol Renal Physiol ; 325(6): F792-F810, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37823198

ABSTRACT

Farnesoid X receptor (FXR) activation reduces renal inflammation, but the underlying mechanisms remain elusive. Neutrophil extracellular traps (NETs) are webs of DNA formed when neutrophils undergo specialized programmed cell death (NETosis). The signaling lipid sphingosine-1-phosphate (S1P) stimulates NETosis via its receptor on neutrophils. Here, we identify FXR as a negative regulator of NETosis via repressing S1P signaling. We determined the effects of the FXR agonist obeticholic acid (OCA) in mouse models of adenosine phosphoribosyltransferase (APRT) deficiency and Alport syndrome, both genetic disorders that cause chronic kidney disease. Renal FXR activity is greatly reduced in both models, and FXR agonism reduces disease severity. Renal NETosis and sphingosine kinase 1 (Sphk1) expression are increased in diseased mice, and they are reduced by OCA in both models. Genetic deletion of FXR increases Sphk1 expression, and Sphk1 expression correlates with NETosis. Importantly, kidney S1P levels in Alport mice are two-fold higher than controls, and FXR agonism restores them back to baseline. Short-term inhibition of sphingosine synthesis in Alport mice with severe kidney disease reverses NETosis, establishing a causal relationship between S1P signaling and renal NETosis. Finally, extensive NETosis is present in human Alport kidney biopsies (six male, nine female), and NETosis severity correlates with clinical markers of kidney disease. This suggests the potential clinical relevance of the newly identified FXR-S1P-NETosis pathway. In summary, FXR agonism represses kidney Sphk1 expression. This inhibits renal S1P signaling, thereby reducing neutrophilic inflammation and NETosis.NEW & NOTEWORTHY Many preclinical studies have shown that the farnesoid X receptor (FXR) reduces renal inflammation, but the mechanism is poorly understood. This report identifies FXR as a novel regulator of neutrophilic inflammation and NETosis via the inhibition of sphingosine-1-phosphate signaling. Additionally, NETosis severity in human Alport kidney biopsies correlates with clinical markers of kidney disease. A better understanding of this signaling axis may lead to novel treatments that prevent renal inflammation and chronic kidney disease.


Subject(s)
Extracellular Traps , Nephritis , Renal Insufficiency, Chronic , Animals , Female , Humans , Male , Mice , Biomarkers , Extracellular Traps/metabolism , Inflammation , Renal Insufficiency, Chronic/drug therapy , Sphingosine/metabolism
4.
Am J Pathol ; 193(12): 1969-1987, 2023 12.
Article in English | MEDLINE | ID: mdl-37717940

ABSTRACT

A gradual decline in renal function occurs even in healthy aging individuals. In addition to aging, per se, concurrent metabolic syndrome and hypertension, which are common in the aging population, can induce mitochondrial dysfunction and inflammation, which collectively contribute to age-related kidney dysfunction and disease. This study examined the role of the nuclear hormone receptors, the estrogen-related receptors (ERRs), in regulation of age-related mitochondrial dysfunction and inflammation. The ERRs were decreased in both aging human and mouse kidneys and were preserved in aging mice with lifelong caloric restriction (CR). A pan-ERR agonist, SLU-PP-332, was used to treat 21-month-old mice for 8 weeks. In addition, 21-month-old mice were treated with a stimulator of interferon genes (STING) inhibitor, C-176, for 3 weeks. Remarkably, similar to CR, an 8-week treatment with a pan-ERR agonist reversed the age-related increases in albuminuria, podocyte loss, mitochondrial dysfunction, and inflammatory cytokines, via the cyclic GMP-AMP synthase-STING and STAT3 signaling pathways. A 3-week treatment of 21-month-old mice with a STING inhibitor reversed the increases in inflammatory cytokines and the senescence marker, p21/cyclin dependent kinase inhibitor 1A (Cdkn1a), but also unexpectedly reversed the age-related decreases in PPARG coactivator (PGC)-1α, ERRα, mitochondrial complexes, and medium chain acyl coenzyme A dehydrogenase (MCAD) expression. These studies identified ERRs as CR mimetics and as important modulators of age-related mitochondrial dysfunction and inflammation. These findings highlight novel druggable pathways that can be further evaluated to prevent progression of age-related kidney disease.


Subject(s)
Inflammation , Kidney , Mice , Humans , Animals , Aged , Infant , Infant, Newborn , Kidney/metabolism , Inflammation/metabolism , Estrogens/metabolism , Mitochondria/metabolism , Cytokines/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
5.
J Biol Chem ; 299(8): 104975, 2023 08.
Article in English | MEDLINE | ID: mdl-37429506

ABSTRACT

Diabetes mellitus is the leading cause of cardiovascular and renal disease in the United -States. Despite the beneficial interventions available for patients with diabetes, there remains a need for additional therapeutic targets and therapies in diabetic kidney disease (DKD). Inflammation and oxidative stress are increasingly recognized as important causes of renal diseases. Inflammation is closely associated with mitochondrial damage. The molecular connection between inflammation and mitochondrial metabolism remains to be elucidated. Recently, nicotinamide adenine nucleotide (NAD+) metabolism has been found to regulate immune function and inflammation. In the present studies, we tested the hypothesis that enhancing NAD metabolism could prevent inflammation in and progression of DKD. We found that treatment of db/db mice with type 2 diabetes with nicotinamide riboside (NR) prevented several manifestations of kidney dysfunction (i.e., albuminuria, increased urinary kidney injury marker-1 (KIM1) excretion, and pathologic changes). These effects were associated with decreased inflammation, at least in part via inhibiting the activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway. An antagonist of the serum stimulator of interferon genes (STING) and whole-body STING deletion in diabetic mice showed similar renoprotection. Further analysis found that NR increased SIRT3 activity and improved mitochondrial function, which led to decreased mitochondrial DNA damage, a trigger for mitochondrial DNA leakage which activates the cGAS-STING pathway. Overall, these data show that NR supplementation boosted NAD metabolism to augment mitochondrial function, reducing inflammation and thereby preventing the progression of diabetic kidney disease.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Mice , Animals , Diabetic Nephropathies/metabolism , NAD/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/metabolism , Mitochondria/metabolism , DNA, Mitochondrial/metabolism , Nucleotidyltransferases/metabolism , Inflammation/metabolism , Interferons/metabolism
6.
J Biol Chem ; 298(11): 102530, 2022 11.
Article in English | MEDLINE | ID: mdl-36209823

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is the most common chronic liver disease in the US, partly due to the increasing incidence of metabolic syndrome, obesity, and type 2 diabetes. The roles of bile acids and their receptors, such as the nuclear receptor farnesoid X receptor (FXR) and the G protein-coupled receptor TGR5, on the development of NASH are not fully clear. C57BL/6J male mice fed a Western diet (WD) develop characteristics of NASH, allowing determination of the effects of FXR and TGR5 agonists on this disease. Here we show that the FXR-TGR5 dual agonist INT-767 prevents progression of WD-induced hepatic steatosis, inflammation, and fibrosis, as determined by histological and biochemical assays and novel label-free microscopy imaging techniques, including third harmonic generation, second harmonic generation, and fluorescence lifetime imaging microscopy. Furthermore, we show INT-767 decreases liver fatty acid synthesis and fatty acid and cholesterol uptake, as well as liver inflammation. INT-767 markedly changed bile acid composition in the liver and intestine, leading to notable decreases in the hydrophobicity index of bile acids, known to limit cholesterol and lipid absorption. In addition, INT-767 upregulated expression of liver p-AMPK, SIRT1, PGC-1α, and SIRT3, which are master regulators of mitochondrial function. Finally, we found INT-767 treatment reduced WD-induced dysbiosis of gut microbiota. Interestingly, the effects of INT-767 in attenuating NASH were absent in FXR-null mice, but still present in TGR5-null mice. Our findings support treatment and prevention protocols with the dual FXR-TGR5 agonist INT-767 arrest progression of WD-induced NASH in mice mediated by FXR-dependent, TGR5-independent mechanisms.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Animals , Male , Mice , Bile Acids and Salts , Cholesterol/metabolism , Diabetes Mellitus, Type 2/complications , Diet, Western , Fatty Acids , Fibrosis , Inflammation/complications , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/metabolism , Receptors, G-Protein-Coupled/metabolism
7.
Commun Med (Lond) ; 2: 105, 2022.
Article in English | MEDLINE | ID: mdl-35996627

ABSTRACT

Background: Image-based machine learning tools hold great promise for clinical applications in pathology research. However, the ideal end-users of these computational tools (e.g., pathologists and biological scientists) often lack the programming experience required for the setup and use of these tools which often rely on the use of command line interfaces. Methods: We have developed Histo-Cloud, a tool for segmentation of whole slide images (WSIs) that has an easy-to-use graphical user interface. This tool runs a state-of-the-art convolutional neural network (CNN) for segmentation of WSIs in the cloud and allows the extraction of features from segmented regions for further analysis. Results: By segmenting glomeruli, interstitial fibrosis and tubular atrophy, and vascular structures from renal and non-renal WSIs, we demonstrate the scalability, best practices for transfer learning, and effects of dataset variability. Finally, we demonstrate an application for animal model research, analyzing glomerular features in three murine models. Conclusions: Histo-Cloud is open source, accessible over the internet, and adaptable for segmentation of any histological structure regardless of stain.

8.
Kidney Int Rep ; 7(6): 1377-1392, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35694561

ABSTRACT

Introduction: Podocyte depletion is a histomorphologic indicator of glomerular injury and predicts clinical outcomes. Podocyte estimation methods or podometrics are semiquantitative, technically involved, and laborious. Implementation of high-throughput podometrics in experimental and clinical workflows necessitates an automated podometrics pipeline. Recognizing that computational image analysis offers a robust approach to study cell and tissue structure, we developed and validated PodoCount (a computational tool for automated podocyte quantification in immunohistochemically labeled tissues) using a diverse data set. Methods: Whole-slide images (WSIs) of tissues immunostained with a podocyte nuclear marker and periodic acid-Schiff counterstain were acquired. The data set consisted of murine whole kidney sections (n = 135) from 6 disease models and human kidney biopsy specimens from patients with diabetic nephropathy (DN) (n = 45). Within segmented glomeruli, podocytes were extracted and image analysis was applied to compute measures of podocyte depletion and nuclear morphometry. Computational performance evaluation and statistical testing were performed to validate podometric and associated image features. PodoCount was disbursed as an open-source, cloud-based computational tool. Results: PodoCount produced highly accurate podocyte quantification when benchmarked against existing methods. Podocyte nuclear profiles were identified with 0.98 accuracy and segmented with 0.85 sensitivity and 0.99 specificity. Errors in podocyte count were bounded by 1 podocyte per glomerulus. Podocyte-specific image features were found to be significant predictors of disease state, proteinuria, and clinical outcome. Conclusion: PodoCount offers high-performance podocyte quantitation in diverse murine disease models and in human kidney biopsy specimens. Resultant features offer significant correlation with associated metadata and outcome. Our cloud-based tool will provide end users with a standardized approach for automated podometrics from gigapixel-sized WSIs.

9.
Int J Mol Sci ; 23(10)2022 May 18.
Article in English | MEDLINE | ID: mdl-35628485

ABSTRACT

Sodium-glucose co-transporters (SGLTs) serve to reabsorb glucose in the kidney. Recently, these transporters, mainly SGLT2, have emerged as new therapeutic targets for patients with diabetes and kidney disease; by inhibiting glucose reabsorption, they promote glycosuria, weight loss, and improve glucose tolerance. They have also been linked to cardiac protection and mitigation of liver injury. However, to date, the mechanism(s) by which SGLT2 inhibition promotes systemic improvements is not fully appreciated. Using an obese TallyHo mouse model which recapitulates the human condition of diabetes and nonalcoholic fatty liver disease (NAFLD), we sought to determine how modulation of renal glucose handling impacts liver structure and function. Apart from an attenuation of hyperglycemia, Empagliflozin was found to decrease circulating triglycerides and lipid accumulation in the liver in male TallyHo mice. This correlated with lowered hepatic cholesterol esters. Using in vivo MRI analysis, we further determined that the reduction in hepatic steatosis in male TallyHo mice was associated with an increase in nuchal white fat indicative of "healthy adipose expansion". Notably, this whitening of the adipose came at the expense of brown adipose tissue. Collectively, these data indicate that the modulation of renal glucose handling has systemic effects and may be useful as a treatment option for NAFLD and steatohepatitis.


Subject(s)
Adipose Tissue, White , Diabetes Mellitus , Non-alcoholic Fatty Liver Disease , Sodium-Glucose Transporter 2 Inhibitors , Adipose Tissue, Brown , Adipose Tissue, White/growth & development , Animals , Benzhydryl Compounds/pharmacology , Glucose/metabolism , Glucosides/pharmacology , Humans , Male , Mice , Mice, Obese , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/drug therapy , Obesity/complications , Obesity/drug therapy , Sodium-Glucose Transporter 2 Inhibitors/pharmacology
10.
Semin Nephrol ; 41(4): 318-330, 2021 07.
Article in English | MEDLINE | ID: mdl-34715962

ABSTRACT

Both obesity and chronic kidney disease are increasingly common causes of morbidity and mortality worldwide. Although obesity often co-exists with diabetes and hypertension, it has become clear over the past several decades that obesity is an independent cause of chronic kidney disease, termed obesity-related glomerulopathy. This review defines the attributes of obesity-related glomerulopathy and describes potential pharmacologic interventions. Interventions discussed include peroxisome proliferator-activated receptors, the farnesoid X receptor, the Takeda G-protein-coupled receptor 5, and the vitamin D receptor.


Subject(s)
Kidney Diseases , Transcription Factors , Humans , Kidney Diseases/etiology , Obesity/complications , Receptors, Cytoplasmic and Nuclear , Transcription Factors/genetics
11.
Am J Physiol Renal Physiol ; 320(6): F1133-F1151, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33870733

ABSTRACT

Although renin-angiotensin blockade has shown beneficial outcomes in patients with diabetes, renal injury progresses in most of these patients. Therefore, there remains a need for new therapeutic targets in diabetic kidney disease. Enhancement of vasoactive peptides, such as natriuretic peptides, via neprilysin inhibition, has been a new approach. A first-in-class drug, sacubitril/valsartan (Sac/Val), a combination of the angiotensin II receptor blocker Val and neprilysin inhibitor prodrug Sac, has been shown to be more effective than renin-angiotensin blockade alone in the treatment of heart failure with reduced ejection fraction. In this study, we tested the effects of Sac/Val in diabetic kidney disease. We administered Sac/Val or Val to two type 2 diabetes mouse models, db/db mice or KKAy mice. After 3 mo of treatment, Sac/Val attenuated the progression of proteinuria, glomerulosclerosis, and podocyte loss in both models of diabetic mice. Val shared a similar improvement but to a lesser degree in some parameters compared with Sac/Val. Sac/Val but not Val decreased the blood glucose level in KKAy mice. Sac/Val exerted renal protection through coordinated effects on antioxidative stress and anti-inflammation. In both diabetic models, we revealed a new mechanism to cause inflammation, self-DNA-activated cGMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling, which was activated in diabetic kidneys and prevented by Sac/Val or Val treatment. The present data suggest that Sac/Val has sufficient therapeutical potential to counter the pathophysiological effects of diabetic kidney disease, and its effectiveness could be better than Val alone.NEW & NOTEWORTHY The first-in-class drug sacubitril/valsartan, a combination of the angiotensin II receptor blocker valsartan and neprilysin inhibitor sacubitril, was tested for its effects in diabetic kidney disease using db/db mice and KKAy mice. We found that Sac/Val has sufficient therapeutical potential to counter the pathophysiological effects of diabetic kidney disease. We further revealed a new mechanism to cause inflammation, self-DNA-activated cGAS-STING signaling, which was activated in diabetic kidneys and prevented by sacubitril/valsartan or valsartan treatment.


Subject(s)
Aminobutyrates/pharmacology , Biphenyl Compounds/pharmacology , Diabetic Nephropathies/drug therapy , Valsartan/pharmacology , Albuminuria/drug therapy , Angiotensin Receptor Antagonists/pharmacology , Animals , Blood Pressure/drug effects , Drug Combinations , Inflammation/prevention & control , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Oxidative Stress , Valsartan/administration & dosage
12.
J Biol Chem ; 295(14): 4733-4747, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32075905

ABSTRACT

Nonalcoholic fatty liver disease is a rapidly rising problem in the 21st century and is a leading cause of chronic liver disease that can lead to end-stage liver diseases, including cirrhosis and hepatocellular cancer. Despite this rising epidemic, no pharmacological treatment has yet been established to treat this disease. The rapidly increasing prevalence of nonalcoholic fatty liver disease and its aggressive form, nonalcoholic steatohepatitis (NASH), requires novel therapeutic approaches to prevent disease progression. Alterations in microbiome dynamics and dysbiosis play an important role in liver disease and may represent targetable pathways to treat liver disorders. Improving microbiome properties or restoring normal bile acid metabolism may prevent or slow the progression of liver diseases such as NASH. Importantly, aberrant systemic circulation of bile acids can greatly disrupt metabolic homeostasis. Bile acid sequestrants are orally administered polymers that bind bile acids in the intestine, forming nonabsorbable complexes. Bile acid sequestrants interrupt intestinal reabsorption of bile acids, decreasing their circulating levels. We determined that treatment with the bile acid sequestrant sevelamer reversed the liver injury and prevented the progression of NASH, including steatosis, inflammation, and fibrosis in a Western diet-induced NASH mouse model. Metabolomics and microbiome analysis revealed that this beneficial effect is associated with changes in the microbiota population and bile acid composition, including reversing microbiota complexity in cecum by increasing Lactobacillus and decreased Desulfovibrio The net effect of these changes was improvement in liver function and markers of liver injury and the positive effects of reversal of insulin resistance.


Subject(s)
Bile Acids and Salts/metabolism , Diet, Western , Liver/drug effects , Non-alcoholic Fatty Liver Disease/pathology , Sevelamer/pharmacology , Animals , Bile Acids and Salts/chemistry , Cecum/microbiology , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Cholesterol/analysis , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Disease Models, Animal , Feces/chemistry , Gastrointestinal Microbiome/drug effects , Lactobacillus/drug effects , Lipid Metabolism/drug effects , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/prevention & control , Sevelamer/chemistry , Sevelamer/therapeutic use , Severity of Illness Index , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
13.
Cells ; 9(2)2020 02 18.
Article in English | MEDLINE | ID: mdl-32085589

ABSTRACT

We sought to delineate the retinal features associated with the high-fat diet (HFD) mouse, a widely used model of obesity. C57BL/6 mice were fed either a high-fat (60% fat; HFD) or low-fat (10% fat; LFD) diet for up to 12 months. The effect of HFD on body weight and insulin resistance were measured. The retina was assessed by electroretinogram (ERG), fundus photography, permeability studies, and trypsin digests for enumeration of acellular capillaries. The HFD cohort experienced hypercholesterolemia when compared to the LFD cohort, but not hyperglycemia. HFD mice developed a higher body weight (60.33 g vs. 30.17g, p < 0.0001) as well as a reduced insulin sensitivity index (9.418 vs. 62.01, p = 0.0002) compared to LFD controls. At 6 months, retinal functional testing demonstrated a reduction in a-wave and b-wave amplitudes. At 12 months, mice on HFD showed evidence of increased retinal nerve infarcts and vascular leakage, reduced vascular density, but no increase in number of acellular capillaries compared to LFD mice. In conclusion, the HFD mouse is a useful model for examining the effect of prediabetes and hypercholesterolemia on the retina. The HFD-induced changes appear to occur slower than those observed in type 2 diabetes (T2D) models but are consistent with other retinopathy models, showing neural damage prior to vascular changes.


Subject(s)
Diabetic Retinopathy/physiopathology , Diet, High-Fat , Diet, Western , Disease Models, Animal , Phenotype , Prediabetic State/physiopathology , Retina/physiopathology , Animals , Body Weight , Diabetes Mellitus, Type 2/physiopathology , Diet, Fat-Restricted , Electroretinography , Insulin Resistance , Mice , Mice, Inbred C57BL , Obesity/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...