Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Comput Struct Biotechnol J ; 21: 1272-1282, 2023.
Article in English | MEDLINE | ID: mdl-36814721

ABSTRACT

T cells expressing either alpha-beta or gamma-delta T cell receptors (TCR) are critical sentinels of the adaptive immune system, with receptor diversity being essential for protective immunity against a broad array of pathogens and agents. Programs available to profile TCR clonotypic signatures can be limiting for users with no coding expertise. Current analytical pipelines can be inefficient due to manual processing steps, open to data entry errors and have multiple analytical tools with unique inputs that require coding expertise. Here we present a bespoke webtool designed for users irrespective of coding expertise, coined 'TCR_Explore', enabling analysis either derived via Sanger sequencing or next generation sequencing (NGS) platforms. Further, TCR_Explore incorporates automated quality control steps for Sanger sequencing. The creation of flexible and publication ready figures are enabled for different sequencing platforms following universal conversion to the TCR_Explore file format. TCR_Explore will enhance a user's capacity to undertake in-depth TCR repertoire analysis of both new and pre-existing datasets for identification of T cell clonotypes associated with health and disease. The web application is located at https://tcr-explore.erc.monash.edu for users to interactively explore TCR repertoire datasets.

2.
Nat Commun ; 12(1): 5110, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34433824

ABSTRACT

HLA-DQ8, a genetic risk factor in type I diabetes (T1D), presents hybrid insulin peptides (HIPs) to autoreactive CD4+ T cells. The abundance of spliced peptides binding to HLA-DQ8 and how they are subsequently recognised by the autoreactive T cell repertoire is unknown. Here we report, the HIP (GQVELGGGNAVEVLK), derived from splicing of insulin and islet amyloid polypeptides, generates a preferred peptide-binding motif for HLA-DQ8. HLA-DQ8-HIP tetramer+ T cells from the peripheral blood of a T1D patient are characterised by repeated TRBV5 usage, which matches the TCR bias of CD4+ T cells reactive to the HIP peptide isolated from the pancreatic islets of a patient with T1D. The crystal structure of three TRBV5+ TCR-HLA-DQ8-HIP complexes shows that the TRBV5-encoded TCR ß-chain forms a common landing pad on the HLA-DQ8 molecule. The N- and C-termini of the HIP is recognised predominantly by the TCR α-chain and TCR ß-chain, respectively, in all three TCR ternary complexes. Accordingly, TRBV5 + TCR recognition of HIP peptides might occur via a 'polarised' mechanism, whereby each chain within the αßTCR heterodimer recognises distinct origins of the spliced peptide presented by HLA-DQ8.


Subject(s)
Diabetes Mellitus, Type 1/metabolism , HLA-DQ Antigens/metabolism , Insulin/metabolism , Peptides/metabolism , Receptors, Antigen, T-Cell/metabolism , Amino Acid Sequence , CD4-Positive T-Lymphocytes/chemistry , CD4-Positive T-Lymphocytes/metabolism , Diabetes Mellitus, Type 1/genetics , HLA-DQ Antigens/chemistry , HLA-DQ Antigens/genetics , Humans , Insulin/chemistry , Insulin/genetics , Peptides/chemistry , Protein Binding , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/genetics
3.
Science ; 372(6546)2021 06 04.
Article in English | MEDLINE | ID: mdl-34083463

ABSTRACT

T cell receptor (TCR) recognition of peptide-major histocompatibility complexes (pMHCs) is characterized by a highly conserved docking polarity. Whether this polarity is driven by recognition or signaling constraints remains unclear. Using "reversed-docking" TCRß-variable (TRBV) 17+ TCRs from the naïve mouse CD8+ T cell repertoire that recognizes the H-2Db-NP366 epitope, we demonstrate that their inability to support T cell activation and in vivo recruitment is a direct consequence of reversed docking polarity and not TCR-pMHCI binding or clustering characteristics. Canonical TCR-pMHCI docking optimally localizes CD8/Lck to the CD3 complex, which is prevented by reversed TCR-pMHCI polarity. The requirement for canonical docking was circumvented by dissociating Lck from CD8. Thus, the consensus TCR-pMHC docking topology is mandated by T cell signaling constraints.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Histocompatibility Antigen H-2D/metabolism , Nucleocapsid Proteins/metabolism , Orthomyxoviridae Infections/immunology , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Animals , CD3 Complex/metabolism , CD8 Antigens/immunology , CD8 Antigens/metabolism , CD8-Positive T-Lymphocytes/metabolism , Epitopes, T-Lymphocyte , Female , Histocompatibility Antigen H-2D/chemistry , Histocompatibility Antigen H-2D/immunology , Influenza A virus , Lymphocyte Activation , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Major Histocompatibility Complex , Mice , Mice, Inbred C57BL , Models, Molecular , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/immunology , Peptide Fragments/immunology , Peptide Fragments/metabolism , Protein Binding , Protein Conformation , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Receptors, Antigen, T-Cell, alpha-beta/immunology , Signal Transduction
4.
Nat Commun ; 12(1): 2936, 2021 05 18.
Article in English | MEDLINE | ID: mdl-34006861

ABSTRACT

Host protection against cutaneous herpes simplex virus 1 (HSV-1) infection relies on the induction of a robust adaptive immune response. Here, we show that Nav1.8+ sensory neurons, which are involved in pain perception, control the magnitude of CD8 T cell priming and expansion in HSV-1-infected mice. The ablation of Nav1.8-expressing sensory neurons is associated with extensive skin lesions characterized by enhanced inflammatory cytokine and chemokine production. Mechanistically, Nav1.8+ sensory neurons are required for the downregulation of neutrophil infiltration in the skin after viral clearance to limit the severity of tissue damage and restore skin homeostasis, as well as for eliciting robust CD8 T cell priming in skin-draining lymph nodes by controlling dendritic cell responses. Collectively, our data reveal an important role for the sensory nervous system in regulating both innate and adaptive immune responses to viral infection, thereby opening up possibilities for new therapeutic strategies.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Herpes Simplex/immunology , Herpesvirus 1, Human/immunology , Nociceptive Pain/immunology , Sensory Receptor Cells/immunology , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Cytokines/immunology , Cytokines/metabolism , Female , Herpes Simplex/genetics , Herpes Simplex/virology , Herpesvirus 1, Human/physiology , Humans , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , NAV1.8 Voltage-Gated Sodium Channel/genetics , NAV1.8 Voltage-Gated Sodium Channel/immunology , NAV1.8 Voltage-Gated Sodium Channel/metabolism , Neutrophil Infiltration/immunology , Nociceptive Pain/genetics , Nociceptive Pain/metabolism , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/virology , Skin/immunology , Skin/metabolism , Skin/virology
5.
J Exp Med ; 218(6)2021 06 07.
Article in English | MEDLINE | ID: mdl-33914023

ABSTRACT

Tissue-resident memory T cells (TRM cells) are key elements of tissue immunity. Here, we investigated the role of the regulator of T cell receptor and cytokine signaling, Ptpn2, in the formation and function of TRM cells in skin. Ptpn2-deficient CD8+ T cells displayed a marked defect in generating CD69+ CD103+ TRM cells in response to herpes simplex virus type 1 (HSV-1) skin infection. This was accompanied by a reduction in the proportion of KLRG1- memory precursor cells and a transcriptional bias toward terminal differentiation. Of note, forced expression of KLRG1 was sufficient to impede TRM cell formation. Normalizing memory precursor frequencies by transferring equal numbers of KLRG1- cells restored TRM generation, demonstrating that Ptpn2 impacted skin seeding with precursors rather than downstream TRM cell differentiation. Importantly, Ptpn2-deficient TRM cells augmented skin autoimmunity but also afforded superior protection from HSV-1 infection. Our results emphasize that KLRG1 repression is required for optimal TRM cell formation in skin and reveal an important role of Ptpn2 in regulating TRM cell functionality.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , Lectins, C-Type/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 2/immunology , Receptors, Immunologic/immunology , Animals , Autoimmunity/immunology , Female , Herpes Simplex/immunology , Herpesvirus 1, Human/immunology , Mice , Mice, Inbred C57BL , Skin/immunology
6.
Sci Immunol ; 6(58)2021 04 16.
Article in English | MEDLINE | ID: mdl-33863750

ABSTRACT

Individuals expressing HLA-DR4 bearing the shared susceptibility epitope (SE) have an increased risk of developing rheumatoid arthritis (RA). Posttranslational modification of self-proteins via citrullination leads to the formation of neoantigens that can be presented by HLA-DR4 SE allomorphs. However, in T cell-mediated autoimmunity, the interplay between the HLA molecule, posttranslationally modified epitope(s), and the responding T cell repertoire remains unclear. In HLA-DR4 transgenic mice, we show that immunization with a Fibß-74cit69-81 peptide led to a population of HLA-DR4Fibß-74cit69-81 tetramer+ T cells that exhibited biased T cell receptor (TCR) ß chain usage, which was attributable to selective clonal expansion from the preimmune repertoire. Crystal structures of pre- and postimmune TCRs showed that the SE of HLA-DR4 represented a main TCR contact zone. Immunization with a double citrullinated epitope (Fibß-72,74cit69-81) altered the responding HLA-DR4 tetramer+ T cell repertoire, which was due to the P2-citrulline residue interacting with the TCR itself. We show that the SE of HLA-DR4 has dual functionality, namely, presentation and a direct TCR recognition determinant. Analogous biased TCR ß chain usage toward the Fibß-74cit69-81 peptide was observed in healthy HLA-DR4+ individuals and patients with HLA-DR4+ RA, thereby suggesting a link to human RA.


Subject(s)
Arthritis, Rheumatoid/immunology , Epitopes, T-Lymphocyte/metabolism , HLA-DR4 Antigen/metabolism , T-Lymphocytes/immunology , Adult , Aged, 80 and over , Alleles , Animals , Arthritis, Rheumatoid/blood , Autoantigens/immunology , Autoantigens/metabolism , Citrullination/immunology , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Female , HLA-DR4 Antigen/genetics , HLA-DR4 Antigen/immunology , HLA-DRB1 Chains/genetics , HLA-DRB1 Chains/immunology , HLA-DRB1 Chains/metabolism , Humans , Male , Mice, Transgenic , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/metabolism
7.
Cell Host Microbe ; 27(6): 950-962.e7, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32396839

ABSTRACT

Liver-resident memory CD8+ T (TRM) cells remain in and constantly patrol the liver to elicit rapid immunity upon antigen encounter and can mediate efficient protection against liver-stage Plasmodium infection. This finding has prompted the development of immunization strategies where T cells are activated in the spleen and then trapped in the liver to form TRM cells. Here, we identify PbRPL6120-127, a H2-Kb-restricted epitope from the putative 60S ribosomal protein L6 (RPL6) of Plasmodium berghei ANKA, as an optimal antigen for endogenous liver TRM cell generation and protection against malaria. A single dose vaccination targeting RPL6 provided effective and prolonged sterilizing immunity against high dose sporozoite challenges. Expressed throughout the parasite life cycle, across Plasmodium species, and highly conserved, RPL6 exhibits strong translation potential as a vaccine candidate. This is further advocated by the identification of a broadly conserved, immunogenic HLA-A∗02:01-restricted epitope in P. falciparum RPL6.


Subject(s)
Antigens, Protozoan/immunology , Immunity, Cellular/immunology , Liver/immunology , Peptides/immunology , Plasmodium berghei/immunology , Ribosomal Proteins/immunology , Animals , Anopheles , CD8-Positive T-Lymphocytes/immunology , Cell Line , Dendritic Cells/immunology , Female , Immunization , Immunologic Memory/immunology , Liver/parasitology , Malaria/parasitology , Malaria Vaccines/immunology , Malaria, Falciparum/metabolism , Male , Mice , Mice, Inbred C57BL , Sporozoites/immunology
8.
J Immunol ; 204(12): 3108-3116, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32341060

ABSTRACT

Naive CD8+ T cell survival in the periphery is critically dependent on tonic TCR signaling through peptide + MHC class I (MHCI) recognition; however, little is known about how natural variation in MHCI levels impacts the naive CD8+ T cell repertoire. Using mice that are hemizygous or homozygous for a single MHCI allele, we showed that despite a reduction in peripheral CD8+ T cell numbers of ∼50% in MHCI hemizygous mice, MHCI levels had no notable impact on the rate of thymic generation or emigration of CD8 single-positive T cells. Moreover, the peripheral T cell repertoire in hemizygous mice showed selective retention of T cell clonotypes with a greater competitive advantage as evidenced by increased expression of CD5 and IL-7Rα. The qualitative superiority of CD8+ T cells retained in hemizygous mice was also seen during influenza A virus infection, in which epitope-specific CD8+ T cells from hemizygous mice had a higher avidity for pMHCI and increased cytokine polyfunctionality, despite a reduced response magnitude. Collectively, this study suggests that natural variation in MHCI expression levels has a notable and biologically relevant impact on the maintenance, but not generation, of the naive CD8+ T cell repertoire.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Genes, MHC Class I/immunology , Histocompatibility Antigens Class I/immunology , Animals , CD5 Antigens/immunology , Female , Influenza A virus/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Orthomyxoviridae Infections/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Interleukin-7/immunology
9.
Gut ; 69(5): 830-840, 2020 05.
Article in English | MEDLINE | ID: mdl-31462555

ABSTRACT

OBJECTIVE: Barley and rye are major components of the Western diet, and historic feeding studies indicate that they cause clinical effects in patients with coeliac disease (CD). This toxicity has been attributed to sequence homology with immunogenic wheat sequences, but in adults with CD, these cereals stimulate unique T cells, indicating a critical contribution to gluten immunity independent of wheat. Clinical and immune feeding studies with these grains in children with CD are sparse. We undertook a barley and rye feeding study to characterise the clinical and T-cell responses in children with CD. DESIGN: 42 children with human leucocyte antigen (HLA)-DQ2.5+ (aged 3-17 years) consumed barley or rye for 3 days. Blood-derived gluten-specific T cells were tested for reactivity against a panel of barley (hordein) and rye (secalin) peptides. Hordein and secalin-specific T-cell clones were generated and tested for grain cross-reactivity. T-cell receptor sequencing was performed on sorted single cells. T-cell responses were compared with those observed in adults with CD. RESULTS: 90% of the children experienced adverse symptoms, mostly GI, and 61% had detectable gluten-specific T-cell responses targeting peptides homologous to those immunogenic in adults. Deamidation was important for peptide reactivity. Homozygosity for HLA-DQ2.5 predicted a stronger T-cell response. Gluten-specific T cells showed striking similarities in their cross-reactivity between children and adults. CONCLUSIONS: Barley and rye induce a consistent range of clinical and T-cell responses in children with CD. The findings highlight the importance of a series of dominant hordein and secalin peptides pathogenic in children with CD, some independent of wheat, which closely correspond to those seen in adults.


Subject(s)
Celiac Disease/immunology , Cross Reactions/immunology , HLA-DQ Antigens/immunology , Hordeum/adverse effects , Secale/adverse effects , Adolescent , Celiac Disease/diet therapy , Child , Child, Preschool , Cohort Studies , Eating , Female , Glutens/immunology , Humans , Male , Prospective Studies , Sensitivity and Specificity , T-Lymphocytes/immunology
10.
J Immunol ; 199(12): 4165-4179, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29084838

ABSTRACT

We describe an MHC class II (I-Ab)-restricted TCR transgenic mouse line that produces CD4+ T cells specific for Plasmodium species. This line, termed PbT-II, was derived from a CD4+ T cell hybridoma generated to blood-stage Plasmodium berghei ANKA (PbA). PbT-II cells responded to all Plasmodium species and stages tested so far, including rodent (PbA, P. berghei NK65, Plasmodium chabaudi AS, and Plasmodium yoelii 17XNL) and human (Plasmodium falciparum) blood-stage parasites as well as irradiated PbA sporozoites. PbT-II cells can provide help for generation of Ab to P. chabaudi infection and can control this otherwise lethal infection in CD40L-deficient mice. PbT-II cells can also provide help for development of CD8+ T cell-mediated experimental cerebral malaria (ECM) during PbA infection. Using PbT-II CD4+ T cells and the previously described PbT-I CD8+ T cells, we determined the dendritic cell (DC) subsets responsible for immunity to PbA blood-stage infection. CD8+ DC (a subset of XCR1+ DC) were the major APC responsible for activation of both T cell subsets, although other DC also contributed to CD4+ T cell responses. Depletion of CD8+ DC at the beginning of infection prevented ECM development and impaired both Th1 and follicular Th cell responses; in contrast, late depletion did not affect ECM. This study describes a novel and versatile tool for examining CD4+ T cell immunity during malaria and provides evidence that CD4+ T cell help, acting via CD40L signaling, can promote immunity or pathology to blood-stage malaria largely through Ag presentation by CD8+ DC.


Subject(s)
Antigen Presentation , CD4-Positive T-Lymphocytes/immunology , CD40 Antigens/immunology , Dendritic Cells/immunology , Malaria/immunology , Mice, Transgenic/immunology , Parasitemia/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Antigens, Protozoan/immunology , CD40 Antigens/deficiency , CD40 Ligand/immunology , Cells, Cultured , Crosses, Genetic , Hybridomas , Lymphocyte Activation , Malaria, Cerebral/immunology , Malaria, Cerebral/prevention & control , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic/genetics , Plasmodium berghei/immunology , Radiation Chimera
11.
J Immunol ; 198(6): 2233-2237, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28159905

ABSTRACT

Tissue-resident memory T cells (TRM) have been shown to afford superior protection against infection, particularly against pathogens that enter via the epithelial surfaces of the body. Although TRM are often concentrated at sites of prior infection, it has been shown that TRM can disseminate throughout the body. We examined the relative effectiveness of global versus targeted CD8+ TRM lodgment in skin. The site of initial T cell priming made little difference to skin lodgement, whereas local inflammation and Ag recognition enhanced TRM accumulation and retention. Disseminated TRM lodgment was seen with the skin, but required multiple exposures to Ag and was inferior to targeted strategies. As a consequence, active recruitment by inflammation or infection resulted in superior TRM numbers and maximal protection against infection. Overall, these results highlight the potency of localized TRM deposition as a means of pathogen control as well as demonstrating the limitations of global TRM lodgment.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory , Infections/immunology , Inflammation/immunology , Skin/immunology , Animals , Antigen Presentation , Cell Movement , Cells, Cultured , Histocompatibility Antigen H-2D/genetics , Immunization, Secondary , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout
12.
PLoS Pathog ; 10(5): e1004135, 2014 May.
Article in English | MEDLINE | ID: mdl-24854165

ABSTRACT

To follow the fate of CD8+ T cells responsive to Plasmodium berghei ANKA (PbA) infection, we generated an MHC I-restricted TCR transgenic mouse line against this pathogen. T cells from this line, termed PbT-I T cells, were able to respond to blood-stage infection by PbA and two other rodent malaria species, P. yoelii XNL and P. chabaudi AS. These PbT-I T cells were also able to respond to sporozoites and to protect mice from liver-stage infection. Examination of the requirements for priming after intravenous administration of irradiated sporozoites, an effective vaccination approach, showed that the spleen rather than the liver was the main site of priming and that responses depended on CD8α+ dendritic cells. Importantly, sequential exposure to irradiated sporozoites followed two days later by blood-stage infection led to augmented PbT-I T cell expansion. These findings indicate that PbT-I T cells are a highly versatile tool for studying multiple stages and species of rodent malaria and suggest that cross-stage reactive CD8+ T cells may be utilized in liver-stage vaccine design to enable boosting by blood-stage infections.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunization, Secondary/methods , Life Cycle Stages/immunology , Malaria/prevention & control , Plasmodium berghei/immunology , Receptors, Antigen, T-Cell/genetics , Sporozoites/immunology , Adoptive Transfer , Animals , Anopheles , Blood/parasitology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Cells, Cultured , Liver/immunology , Liver/parasitology , Malaria/blood , Malaria/immunology , Malaria/parasitology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Plasmodium berghei/growth & development , Plasmodium chabaudi , Plasmodium yoelii , Receptors, Antigen, T-Cell/immunology
13.
Proc Natl Acad Sci U S A ; 109(18): 7037-42, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22509047

ABSTRACT

Although circulating memory T cells provide enhanced protection against pathogen challenge, they often fail to do so if infection is localized to peripheral or extralymphoid compartments. In those cases, it is T cells already resident at the site of virus challenge that offer superior immune protection. These tissue-resident memory T (T(RM)) cells are identified by their expression of the α-chain from the integrin α(E)(CD103)ß(7), and can exist in disequilibrium with the blood, remaining in the local environment long after peripheral infections subside. In this study, we demonstrate that long-lived intraepithelial CD103(+)CD8(+) T(RM) cells can be generated in the absence of in situ antigen recognition. Local inflammation in skin and mucosa alone resulted in enhanced recruitment of effector populations and their conversion to the T(RM) phenotype. The CD8(+) T(RM) cells lodged in these barrier tissues provided long-lived protection against local challenge with herpes simplex virus in skin and vagina challenge models, and were clearly superior to the circulating memory T-cell cohort. The results demonstrate that peripheral T(RM) cells can be generated and survive in the absence of local antigen presentation and provide a powerful means of achieving immune protection against peripheral infection.


Subject(s)
T-Lymphocyte Subsets/immunology , Adoptive Transfer , Animals , Antigen Presentation , CD8-Positive T-Lymphocytes/immunology , Epithelium/immunology , Epithelium/virology , Female , Herpes Genitalis/immunology , Herpes Genitalis/prevention & control , Herpes Simplex/immunology , Herpes Simplex/prevention & control , Immunologic Memory , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Skin/immunology , Skin/virology , Skin Diseases, Viral/immunology , Skin Diseases, Viral/prevention & control , Time Factors
14.
J Immunol ; 188(5): 2173-8, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22271651

ABSTRACT

Persisting infections are often associated with chronic T cell activation. For certain pathogens, this can lead to T cell exhaustion and survival of what is otherwise a cleared infection. In contrast, for herpesviruses, T cells never eliminate infection once it is established. Instead, effective immunity appears to maintain these pathogens in a state of latency. We used infection with HSV to examine whether effector-type T cells undergoing chronic stimulation retained functional and proliferative capacity during latency and subsequent reactivation. We found that latency-associated T cells exhibited a polyfunctional phenotype and could secrete a range of effector cytokines. These T cells were also capable of mounting a recall proliferative response on HSV reactivation and could do so repeatedly. Thus, for this latent infection, T cells subjected to chronic Ag stimulation and periodic reactivation retain the ability to respond to local virus challenge.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/toxicity , Herpes Simplex/immunology , Herpes Simplex/virology , Herpesvirus 1, Human/immunology , Viral Envelope Proteins/toxicity , Virus Activation/immunology , Virus Latency/immunology , Adoptive Transfer , Animals , CD8-Positive T-Lymphocytes/transplantation , CD8-Positive T-Lymphocytes/virology , Chronic Disease , Epitopes, T-Lymphocyte/administration & dosage , Epitopes, T-Lymphocyte/immunology , Ganglia, Sensory/enzymology , Ganglia, Sensory/immunology , Ganglia, Sensory/pathology , Granzymes/biosynthesis , Herpes Simplex/pathology , Herpesvirus 1, Human/pathogenicity , Mice , Mice, Inbred C57BL , Mice, Transgenic , Viral Envelope Proteins/administration & dosage
15.
Immunol Cell Biol ; 89(1): 143-8, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20458339

ABSTRACT

After localized infection, naive antigen-specific T cells must localize to those lymph nodes (LNs) draining the site of infection before engaging antigen-bearing dendritic cells. Given that naive precursors are initially distributed randomly throughout the secondary lymphoid compartment, it is unclear how long it takes most antigen-specific precursors to mobilize to draining LNs and become recruited into the primary T cell response. Here, we have examined the kinetics of these events, measuring the period over which naive precursors are recruited into the primary T cell response after cutaneous infection with herpes simplex virus type 1 (HSV-1). We show that despite prolonged MHC class-I-restricted antigen presentation, most naive HSV-specific precursors were recruited from the circulation in the first 4 days after inoculation. Furthermore, this prolonged presentation was also not essential for memory development, as truncating the period of antigen presentation to around 4 days did not affect the level of contraction, or long-term stability of the HSV-specific CD8(+) memory T cell pool. Thus, despite initially being dispersed throughout the entire circulation, the recruitment of naive precursors is achieved quite quickly, even when priming is restricted to a small number of draining LNs.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Herpes Simplex/immunology , Herpes Simplex/pathology , Herpesvirus 1, Human/immunology , Lymphocyte Activation/immunology , Skin Diseases, Infectious/immunology , Skin Diseases, Infectious/pathology , Animals , Antigen Presentation/immunology , Immunity, Cellular , Mice , Mice, Inbred C57BL , Time Factors
16.
Virology ; 400(2): 248-58, 2010 May 10.
Article in English | MEDLINE | ID: mdl-20199790

ABSTRACT

Resistance to lethal encephalitis in mice infected with HSV-1 via the oral mucosa is mouse strain dependent. In susceptible BALB/c, HSV-1 spreads throughout the CNS but in resistant BL/6 mice, virus is restricted to the brainstem. To examine the contribution of cellular immunity in restricting viral spread, we used a combination of antibody depleted and KO mice. Individually, NK/NKT, iNKT, CD4(+), CD8(+), and gammadelta T-cells do not restrict HSV-1 spread. In contrast, virus spreads throughout the CNS of BL/6 CL I KO mice and BL/6 mice treated with either anti-asialoGM1 Ab or both anti-CD8 and anti-NK1.1 mAbs. The results highlight the importance of redundancy in the immune system in restricting viral spread in the CNS, argue for a role of NK/NKT and CD8(+) T-cells in mediating the restriction, and provide a hierarchical order of the individual elements in controlling virus in BL/6 mice infected with HSV-1 via the oral mucosa.


Subject(s)
Central Nervous System/immunology , Central Nervous System/virology , Herpes Simplex/immunology , Herpesvirus 1, Human/immunology , Immunity, Innate , Animals , Brain/virology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Killer Cells, Natural/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocyte Subsets/immunology , Viral Load
17.
Immunol Cell Biol ; 86(8): 666-75, 2008.
Article in English | MEDLINE | ID: mdl-18607387

ABSTRACT

During an initial encounter with herpes simplex virus type 1 (HSV-1) it takes several days for an adaptive immune response to develop and for herpes-specific CD8(+) T cells to infiltrate sites of infection. By this time the virus has firmly established itself within the innervating sensory nervous system where it then persists indefinitely. Preventing the establishment of viral latency would require blocking the skin to nervous system transmission of the virus. We wished to examine if CD8(+) T cells present early during acute HSV-1 infection could block this transmission. We show that effector CD8(+) T cells failed to prevent the establishment of HSV latency even when present prior to infection. This lack of blocking likely reflects the delayed infiltration of the CD8(+) T cells into the infected skin. Examination of the kinetics of HSV-1 infection highlighted the rapidity at which the virus infects the sensory ganglia and singled out early viral replication within the skin as an important factor in determining the magnitude of the ensuing latent infection. Though unable to prevent the establishment of latency, CD8(+) T cells could reduce the average viral copy number of the residual latent infection by dampening the skin infection and thus limiting the skin-to-nerve transmission of virus.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Herpes Simplex/immunology , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/physiology , Skin/immunology , Virus Latency , Animals , Female , Ganglia, Spinal/immunology , Ganglia, Spinal/virology , Herpes Simplex/virology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Skin/innervation , Skin/virology , Viral Load , Virus Replication
18.
Immunol Cell Biol ; 85(5): 394-6, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17549072

ABSTRACT

T-cell receptor (TCR) transgenic mice have proven useful for the study of various immune parameters. Despite this, it has been suggested that transferred T cells respond differently to their endogenous counterparts at least in terms of conversion to antigen-experienced populations bearing memory cell markers. Here, we have compared the response of TCR transgenic T cells to endogenous populations within the context of infection with herpes simplex virus. We found that adoptive transfer at numbers approaching those of the endogenous virus-specific subset results in a response with similar kinetics, magnitude and memory subset conversion. This suggests that this form of optimized T-cell transfer remains a useful means of tracking antiviral immune responses.


Subject(s)
Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Animals , Mice , Mice, Transgenic , Simplexvirus/physiology , Viral Proteins
19.
Immunol Cell Biol ; 84(6): 543-50, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16956387

ABSTRACT

The T-cell response to even complex pathogens is often focused on only a handful of immunodominant determinants. Such narrow responses provoke a selective pressure that can drive the emergence of CTL escape variants, raising the question of whether a broader response, targeting multiple non-dominant peptides may be more beneficial. To examine the ability of the T-cell repertoire to respond to non-dominant determinants, we have investigated how mutating the dominant peptide in HSV affects the magnitude of the CD8+ T-cell response. We found that the CTL response to HSV lacking the dominant peptide was only modestly reduced compared with the wild-type virus and, surprisingly, this compensation occurred without any enhancement in the response to an established minor epitope. These findings are supportive of a malleable T-cell repertoire that can elicit strong responses to alternate, unknown determinants in the absence of the dominant response.


Subject(s)
Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/physiology , Immunodominant Epitopes/genetics , T-Lymphocytes, Cytotoxic/physiology , Viral Envelope Proteins/immunology , Amino Acid Sequence , Animals , Base Sequence , Herpesvirus 1, Human/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Molecular Sequence Data , T-Lymphocytes, Cytotoxic/immunology , Viral Envelope Proteins/genetics , Virus Replication
20.
Immunity ; 25(1): 153-62, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16860764

ABSTRACT

Skin dendritic cells (DCs) are thought to act as key initiators of local T cell immunity. Here we show that after skin infection with herpes simplex virus (HSV), cytotoxic T lymphocyte (CTL) activation required MHC class I-restricted presentation by nonmigratory CD8(+) DCs rather than skin-derived DCs. Despite a lack of direct presentation by migratory DCs, blocking their egress from infected skin substantially inhibited class I-restricted presentation and HSV-specific CTL responses. These results support the argument for initial transport of antigen by migrating DCs, followed by its transfer to the lymphoid-resident DCs for presentation and CTL priming. Given that relatively robust CTL responses were seen with small numbers of skin-emigrant DCs, we propose that this inter-DC antigen transfer functions to amplify presentation across a larger network of lymphoid-resident DCs for efficient T cell activation.


Subject(s)
Antigens/immunology , Cell Movement , Cross-Priming , Dendritic Cells/cytology , Dendritic Cells/immunology , Lymph Nodes/cytology , T-Lymphocytes, Cytotoxic/immunology , Animals , Bone Marrow/immunology , Cells, Cultured , Herpes Simplex/immunology , Herpes Simplex/virology , Lymph Nodes/immunology , Mice , Mice, Transgenic , Simplexvirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...