Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 601(7894): 531-536, 2022 01.
Article in English | MEDLINE | ID: mdl-34847568

ABSTRACT

Quantum many-body systems display rich phase structure in their low-temperature equilibrium states1. However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases2-8 that may otherwise be forbidden by equilibrium thermodynamics, a paradigmatic example being the discrete time crystal (DTC)7,9-15. Concretely, dynamical phases can be defined in periodically driven many-body-localized (MBL) systems via the concept of eigenstate order7,16,17. In eigenstate-ordered MBL phases, the entire many-body spectrum exhibits quantum correlations and long-range order, with characteristic signatures in late-time dynamics from all initial states. It is, however, challenging to experimentally distinguish such stable phases from transient phenomena, or from regimes in which the dynamics of a few select states can mask typical behaviour. Here we implement tunable controlled-phase (CPHASE) gates on an array of superconducting qubits to experimentally observe an MBL-DTC and demonstrate its characteristic spatiotemporal response for generic initial states7,9,10. Our work employs a time-reversal protocol to quantify the impact of external decoherence, and leverages quantum typicality to circumvent the exponential cost of densely sampling the eigenspectrum. Furthermore, we locate the phase transition out of the DTC with an experimental finite-size analysis. These results establish a scalable approach to studying non-equilibrium phases of matter on quantum processors.


Subject(s)
Cold Temperature , Phase Transition , Thermodynamics
2.
Science ; 374(6574): 1479-1483, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34709938

ABSTRACT

Interactions in quantum systems can spread initially localized quantum information into the exponentially many degrees of freedom of the entire system. Understanding this process, known as quantum scrambling, is key to resolving several open questions in physics. Here, by measuring the time-dependent evolution and fluctuation of out-of-time-order correlators, we experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor. We engineer quantum circuits that distinguish operator spreading and operator entanglement and experimentally observe their respective signatures. We show that whereas operator spreading is captured by an efficient classical model, operator entanglement in idealized circuits requires exponentially scaled computational resources to simulate. These results open the path to studying complex and practically relevant physical observables with near-term quantum processors.

3.
Nat Nanotechnol ; 14(8): 747-750, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31308497

ABSTRACT

Quantum computation requires qubits that satisfy often-conflicting criteria, which include long-lasting coherence and scalable control1. One approach to creating a suitable qubit is to operate in an encoded subspace of several physical qubits. Although such encoded qubits may be particularly susceptible to leakage out of their computational subspace, they can be insensitive to certain noise processes2,3 and can also allow logical control with a single type of entangling interaction4 while maintaining favourable features of the underlying physical system. Here we demonstrate high-fidelity operation of an exchange-only qubit encoded in a subsystem of three coupled electron spins5 confined in gated, isotopically enhanced silicon quantum dots6. This encoding requires neither high-frequency electric nor magnetic fields for control, and instead relies exclusively on the exchange interaction4,5, which is highly local and can be modulated with a large on-off ratio using only fast voltage pulses. It is also compatible with very low and gradient-free magnetic field environments, which simplifies integration with superconducting materials. We developed and employed a modified blind randomized benchmarking protocol that determines both computational and leakage errors7,8, and found that unitary operations have an average total error of 0.35%, with half of that, 0.17%, coming from leakage driven by interactions with substrate nuclear spins. The combination of this proven performance with complete control via gate voltages makes the exchange-only qubit especially attractive for use in many-qubit systems.

4.
Nat Commun ; 4: 2228, 2013.
Article in English | MEDLINE | ID: mdl-23887066

ABSTRACT

Entanglement between stationary quantum memories and photonic qubits is crucial for future quantum communication networks. Although high-fidelity spin-photon entanglement was demonstrated in well-isolated atomic and ionic systems, in the solid-state, where massively parallel, scalable networks are most realistically conceivable, entanglement fidelities are typically limited due to intrinsic environmental interactions. Distilling high-fidelity entangled pairs from lower-fidelity precursors can act as a remedy, but the required overhead scales unfavourably with the initial entanglement fidelity. With spin-photon entanglement as a crucial building block for entangling quantum network nodes, obtaining high-fidelity entangled pairs becomes imperative for practical realization of such networks. Here we report the first results of complete state tomography of a solid-state spin-photon-polarization-entangled qubit pair, using a single electron-charged indium arsenide quantum dot. We demonstrate record-high fidelity in the solid-state of well over 90%, and the first (99.9%-confidence) achievement of a fidelity that will unambiguously allow for entanglement distribution in solid-state quantum repeater networks.

5.
Sci Rep ; 3: 1939, 2013.
Article in English | MEDLINE | ID: mdl-23736868

ABSTRACT

State distillation is the process of taking a number of imperfect copies of a particular quantum state and producing fewer better copies. Until recently, the lowest overhead method of distilling states produced a single improved [formula: see text] state given 15 input copies. New block code state distillation methods can produce k improved [formula: see text] states given 3k + 8 input copies, potentially significantly reducing the overhead associated with state distillation. We construct an explicit surface code implementation of block code state distillation and quantitatively compare the overhead of this approach to the old. We find that, using the best available techniques, for parameters of practical interest, block code state distillation does not always lead to lower overhead, and, when it does, the overhead reduction is typically less than a factor of three.


Subject(s)
Computer Simulation , Electrons , Quantum Theory , Models, Chemical , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...