Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Angew Chem Int Ed Engl ; 63(4): e202312130, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-37699142

ABSTRACT

The removal of lead from commercialized perovskite-oxide-based piezoceramics has been a recent major topic in materials research owing to legislation in many countries. In this regard, Sn(II)-perovskite oxides have garnered keen interest due to their predicted large spontaneous electric polarizations and isoelectronic nature for substitution of Pb(II) cations. However, they have not been considered synthesizable owing to their high metastability. Herein, the perovskite lead hafnate, i.e., PbHfO3 in space group Pbam, is shown to react with SnClF at a low temperature of 300 °C, and resulting in the first complete Sn(II)-for-Pb(II) substitution, i.e. SnHfO3 . During this topotactic transformation, a high purity and crystallinity is conserved with Pbam symmetry, as confirmed by X-ray and electron diffraction, elemental analysis, and 119 Sn Mössbauer spectroscopy. In situ diffraction shows SnHfO3 also possesses reversible phase transformations and is potentially polar between ≈130-200 °C. This so-called 'de-leadification' is thus shown to represent a highly useful strategy to fully remove lead from perovskite-oxide-based piezoceramics and opening the door to new explorations of polar and antipolar Sn(II)-oxide materials.

2.
J Exp Bot ; 74(21): 6417-6430, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37611151

ABSTRACT

Phosphorus is essential to plant growth and agricultural crop yields, yet the challenges associated with phosphorus fertilization in agriculture, such as aquatic runoff pollution and poor phosphorus bioavailability, are increasingly difficult to manage. Comprehensively understanding the dynamics of phosphorus uptake and signaling mechanisms will inform the development of strategies to address these issues. This review describes regulatory mechanisms used by specific tissues in the root apical meristem to sense and take up phosphate from the rhizosphere. The major regulatory mechanisms and related hormone crosstalk underpinning phosphate starvation responses, cellular phosphate homeostasis, and plant adaptations to phosphate starvation are also discussed, along with an overview of the major mechanism of plant systemic phosphate starvation responses. Finally, this review discusses recent promising genetic engineering strategies for improving crop phosphorus use and computational approaches that may help further design strategies for improved plant phosphate acquisition. The mechanisms and approaches presented include a wide variety of species including not only Arabidopsis but also crop species such as Oryza sativa (rice), Glycine max (soybean), and Triticum aestivum (wheat) to address both general and species-specific mechanisms and strategies. The aspects of phosphorus deficiency responses and recently employed strategies of improving phosphate acquisition that are detailed in this review may provide insights into the mechanisms or phenotypes that may be targeted in efforts to improve crop phosphorus content and plant growth in low phosphorus soils.


Subject(s)
Arabidopsis , Oryza , Phosphates , Phosphorus , Homeostasis , Biological Transport , Crops, Agricultural , Triticum/genetics , Oryza/genetics , Plant Roots/genetics
3.
Nanotechnology ; 34(12)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36538824

ABSTRACT

Hf0.5Zr0.5O2(HZO) thin films are promising candidates for non-volatile memory and other related applications due to their demonstrated ferroelectricity at the nanoscale and compatibility with Si processing. However, one reason that HZO has not been fully scaled into industrial applications is due to its deleterious wake-up and fatigue behavior which leads to an inconsistent remanent polarization during cycling. In this study, we explore an interfacial engineering strategy in which we insert 1 nm Al2O3interlayers at either the top or bottom HZO/TiN interface of sequentially deposited metal-ferroelectric-metal capacitors. By inserting an interfacial layer while limiting exposure to the ambient environment, we successfully introduce a protective passivating layer of Al2O3that provides excess oxygen to mitigate vacancy formation at the interface. We report that TiN/HZO/TiN capacitors with a 1 nm Al2O3at the top interface demonstrate a higher remanent polarization (2Pr∼ 42µC cm-2) and endurance limit beyond 108cycles at a cycling field amplitude of 3.5 MV cm-1. We use time-of-flight secondary ion mass spectrometry, energy dispersive spectroscopy, and grazing incidence x-ray diffraction to elucidate the origin of enhanced endurance and leakage properties in capacitors with an inserted 1 nm Al2O3layer. We demonstrate that the use of Al2O3as a passivating dielectric, coupled with sequential ALD fabrication, is an effective means of interfacial engineering and enhances the performance of ferroelectric HZO devices.

4.
Nanoscale Adv ; 4(24): 5320-5329, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36540127

ABSTRACT

Sn(ii)-based perovskite oxides, being the subject of longstanding theoretical interest for the past two decades, have been synthesized for the first time in the form of nano eggshell particle morphologies. All past reported synthetic attempts have been unsuccessful owing to their metastable nature, i.e., by their thermodynamic instability towards decomposition to their constituent oxides. A new approach was discovered that finally provides an effective solution to surmounting this intractable synthetic barrier and which can be the key to unlocking the door to many other predicted metastable oxides. A low-melting KSn2Cl5 salt was utilized to achieve a soft topotactic exchange of Sn(ii) cations into a Ba-containing perovskite, i.e., BaHfO3 with particle sizes of ∼350 nm, at a low reaction temperature of 200 °C. The resulting particles exhibit nanoshell-over-nanoshell morphologies, i.e., with SnHfO3 forming as ∼20 nm thick shells over the surfaces of the BaHfO3 eggshell particles. Formation of the metastable SnHfO3 is found to be thermodynamically driven by the co-production of the highly stable BaCl2 and KCl side products. Despite this, total energy calculations show that Sn(ii) distorts from the A-site asymmetrically and randomly and the interdiffusion has a negligible impact on the energy of the system (i.e., layered vs. solid solution). Additionally, nano eggshell particle morphologies of BaHfO3 were found to yield highly pure SnHfO3 for the first time, thus circumventing the intrinsic ion-diffusion limits occurring at this low reaction temperature. In summary, these results demonstrate that the metastability of many theoretically predicted Sn(ii)-perovskites can be overcome by leveraging the high cohesive energies of the reactants, the exothermic formation of a stable salt side product, and a shortened diffusion pathway for the Sn(ii) cations.

5.
ACS Appl Mater Interfaces ; 14(37): 42232-42244, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36069477

ABSTRACT

Hafnia-zirconia (HfO2-ZrO2) solid solution thin films have emerged as viable candidates for electronic applications due to their compatibility with Si technology and demonstrated ferroelectricity at the nanoscale. The oxygen source in atomic layer deposition (ALD) plays a crucial role in determining the impurity concentration and phase composition of HfO2-ZrO2 within metal-ferroelectric-metal devices, notably at the Hf0.5Zr0.5O2 /TiN interface. The interface characteristics of HZO/TiN are fabricated via sequential no-atmosphere processing (SNAP) with either H2O or O2-plasma to study the influence of oxygen source on buried interfaces. Time-of-flight secondary ion mass spectrometry reveals that HZO films grown via O2-plasma promote the development of an interfacial TiOx layer at the bottom HZO/TiN interface. The presence of the TiOx layer leads to the development of 111-fiber texture in HZO as confirmed by two-dimensional X-ray diffraction (2D-XRD). Structural and chemical differences between HZO films grown via H2O or O2-plasma were found to strongly affect electrical characteristics such as permittivity, leakage current density, endurance, and switching kinetics. While HZO films grown via H2O yielded a higher remanent polarization value of 25 µC/cm2, HZO films grown via O2-plasma exhibited a comparable Pr of 21 µC/cm2 polarization and enhanced field cycling endurance limit by almost 2 orders of magnitude. Our study illustrates how oxygen sources (O2-plasma or H2O) in ALD can be a viable way to engineer the interface and properties in HZO thin films.

6.
Chemistry ; 28(33): e202200479, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35389540

ABSTRACT

Recently, many new, complex, functional oxides have been discovered with the surprising use of topotactic ion-exchange reactions on close-packed structures, such as found for wurtzite, rutile, perovskite, and other structure types. Despite a lack of apparent cation-diffusion pathways in these structure types, synthetic low-temperature transformations are possible with the interdiffusion and exchange of functional cations possessing ns2 stereoactive lone pairs (e. g., Sn(II)) or unpaired ndx electrons (e. g., Co(II)), targeting new and favorable modulations of their electronic, magnetic, or catalytic properties. This enables a synergistic blending of new functionality to an underlying three-dimensional connectivity, i. e., [-M-O-M-O-]n , that is maintained during the transformation. In many cases, this tactic represents the only known pathway to prepare thermodynamically unstable solids that otherwise would commonly decompose by phase segregation, such as that recently applied to the discovery of many new small bandgap semiconductors.

7.
Sci Total Environ ; 820: 153153, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35041946

ABSTRACT

Removing phosphorus (P) from water and wastewater is essential for preventing eutrophication and protecting environmental quality. Lanthanum [La(III)]-containing materials can effectively and selectively remove orthophosphate (PO4) from aqueous systems, but there remains a need to better understand the underlying mechanism of PO4 removal. Our objectives were to 1) identify the mechanism of PO4 removal by La-containing materials and 2) evaluate the ability of a new material, La2(CO3)3(s), to remove PO4 from different aqueous matrices, including municipal wastewater. We determined the dominant mechanism of PO4 removal by comparing geochemical simulations with equilibrium data from batch experiments and analyzing reaction products by X-ray diffraction and scanning transmission electron microscopy with energy dispersive spectroscopy. Geochemical simulations of aqueous systems containing PO4 and La-containing materials predicted that PO4 removal occurs via precipitation of poorly soluble LaPO4(s). Results from batch experiments agreed with those obtained from geochemical simulations, and mineralogical characterization of the reaction products were consistent with PO4 removal occurring primarily by precipitation of LaPO4(s). Between pH 1.5 and 12.9, La2(CO3)3(s) selectively removed PO4 over other anions from different aqueous matrices, including treated wastewater. However, the rate of PO4 removal decreased with increasing solution pH. In comparison to other solids, such as La(OH)3(s), La2(CO3)3(s) exhibits a relatively low solubility, particularly under slightly acidic conditions. Consequently, release of La3+ into the environment can be minimized when La2(CO3)3(s) is deployed for PO4 sequestration.


Subject(s)
Lanthanum , Water Pollutants, Chemical , Adsorption , Lanthanum/chemistry , Phosphates/chemistry , Water
9.
Nanotechnology ; 32(48)2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34407525

ABSTRACT

Ferroelectric random-access memory (FRAM) based on conventional ferroelectric materials is a non-volatile memory with fast read/write operations, high endurance, and 10 years of data retention time. However, it suffers from destructive read-out operation and lack of CMOS compatibility. HfO2-based ferroelectric tunnel junctions (FTJ) may compensate for the shortcomings of FRAM by its CMOS compatibility, fast operation speed, and non-destructive readout operation. In this study, we investigate the effect of ferroelectric and interface film thickness on the tunneling electroresistance or ON/OFF current ratio of the Hf0.5Zr0.5O2/Al2O3based FTJ device. Integrating a thick ferroelectric layer (i.e. 12 nm Hf0.5Zr0.5O2) with a thin interface layer (i.e. 1 nm Al2O3) resulted in an ON/OFF current ratio of 78. Furthermore, to elucidate the relationship between ON/OFF current ratio and interfacial properties, the Hf0.5Zr0.5O2-Al2O3films and Ge-Al2O3interfaces are examined via time-of-flight secondary ion mass spectrometry depth profiling mode. A bilayer oxide heterostructure (Hf0.5Zr0.5O2/Al2O3) is deposited by atomic layer deposition (ALD) on the Ge substrate. The ON/OFF current ratio is enhanced by an order of magnitude when the Hf0.5Zr0.5O2film deposition mode is changed from exposure (H2O) ALD to sequential plasma (sequential O2-H2) ALD. Moreover, the interfacial engineering approach based on thein situALD H2-plasma surface pre-treatment of Ge increases the ON/OFF current ratio from 9 to 38 by reducing the interfacial trap density state at the Ge-Al2O3interface and producing Al2O3with fewer oxygen vacancies as compared to the wet etch (HF + H2O rinse) treatment of the Ge substrate. This study provides evidence of strong coupling between Hf0.5Zr0.5O2and Al2O3films in controlling the ON/OFF current ratio of the FTJ.

10.
Water Res ; 202: 117399, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34333297

ABSTRACT

Lanthanum modified bentonite (LMB) has been applied to eutrophic lakes to reduce phosphorus (P) concentrations in the water column and mitigate P release from sediments. Previous experiments suggest that natural organic matter (NOM) can interfere with phosphate (PO4)-binding to LMB and exacerbate lanthanum (La)-release from bentonite. This evidence served as motivation for this study to systematically determine the effects of NOM, solution pH, and bentonite as a La carrier on P removal. We conducted both geochemical modeling and controlled-laboratory batch kinetic experiments to understand the pH-dependent impacts of humic and fulvic acids on PO4-binding to LMB and La release from LMB. The role of bentonite was studied by comparing PO4 removal obtained by LMB and La3+ (added as LaCl3 salt to represent the La-containing component of LMB). Our results from both geochemical modeling and batch experiments indicate that the PO4-binding ability of LMB is decreased in the presence of NOM, and the decrease is more pronounced at pH 8.5 than at 6. At the highest evaluated NOM concentration (28 mg C L-1), PO4-removal by La3+ was substantially lower than that by LMB, implying that bentonite clay in LMB shielded La from interactions with NOM, while still allowing PO4 capture by La. Finally, the presence of NOM promoted La-release from LMB, and the amount of La released depended on solution pH and both the type (i.e., fulvic/humic acid ratio) and concentration of NOM. Overall, these results provide an important basis for management of P in lakes and eutrophication control that relies on LMB applications.


Subject(s)
Bentonite , Lanthanum , Hydrogen-Ion Concentration , Lakes , Phosphates , Phosphorus
11.
Geochim Cosmochim Acta ; 308: 237-255, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34305159

ABSTRACT

Biogenic iron (Fe) (oxyhydr)oxides (BIOS) partially control the cycling of organic matter, nutrients, and pollutants in soils and water via sorption and redox reactions. Although recent studies have shown that the structure of BIOS resembles that of two-line ferrihydrite (2LFh), we lack detailed knowledge of the BIOS local coordination environment and structure required to understand the drivers of BIOS reactivity in redox active environments. Therefore, we used a combination of microscopy, scattering, and spectroscopic methods to elucidate the structure of BIOS sampled from a groundwater seep in North Carolina and compare them to 2LFh. We also simulated the effects of wet-dry cycles by varying sample preparation (e.g., freezing, flash freezing with freeze drying, freezing with freeze drying and oven drying). In general, the results show that both the long- and short-range ordering in BIOS are structurally distinct and notably more disordered than 2LFh. Our structure analysis, which utilized Fe K-edge X-ray absorption spectroscopy, Mössbauer spectroscopy, X-ray diffraction, and pair distribution function analyses, showed that the BIOS samples were more poorly ordered than 2LFh and intimately mixed with organic matter. Furthermore, pair distribution function analyses resulted in coherent scattering domains for the BIOS samples ranging from 12-18 Å, smaller than those of 2LFh (21-27 Å), consistent with reduced ordering. Additionally, Fe L-edge XAS indicated that the local coordination environment of 2LFh samples consisted of minor amounts of tetrahedral Fe(III), whereas BIOS were dominated by octahedral Fe(III), consistent with depletion of the sites due to small domain size and incorporation of impurities (e.g., organic C, Al, Si, P). Within sample sets, the frozen freeze dried and oven dried sample preparation increased the crystallinity of the 2LFh samples when compared to the frozen treatment, whereas the BIOS samples remained more poorly crystalline under all sample preparations. This research shows that BIOS formed in circumneutral pH waters are poorly ordered and more environmentally stable than 2LFh.

12.
Article in English | MEDLINE | ID: mdl-32286973

ABSTRACT

Ferroelectric films are often constrained by their substrates and subject to scaling effects, including suppressed dielectric permittivity. In this work, the thickness dependence of intrinsic and extrinsic contributions to the dielectric properties was elucidated. A novel approach to quantitatively deconstruct the relative permittivity into three contributions (intrinsic, reversible extrinsic, and irreversible extrinsic) was developed using a combination of X-ray diffraction (XRD) and Rayleigh analysis. In situ synchrotron XRD was used to understand the influence of residual stress and substrate clamping on the domain state, ferroelastic domain reorientation, and electric field-induced strain. For tetragonal {001} textured Pb0.99(Zr0.3Ti0.7)0.98Nb0.02O3 thin films clamped to an Si substrate, a thickness-dependent in-plane tensile stress developed during processing, which dictates the domain distribution over a thickness range of 0.27- [Formula: see text]. However, after the films were partially declamped from the substrate and annealed, the residual stress was alleviated. As a result, the thickness dependence of the volume fraction of c -domains largely disappeared, and the out-of-plane lattice spacings ( d ) for both a - and c -domains increased. The volume fraction of c -domains was used to calculate the intrinsic relative permittivity. The reversible Rayleigh coefficient was then used to separate the intrinsic and reversible extrinsic contributions. The reversible extrinsic response accounted for ~50% of the overall relative permittivity (measured at 50 Hz and alternating current (ac) field of 0.5·Ec ) and was thickness dependent even after poling and upon release.

13.
Toxicology ; 445: 152598, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32976959

ABSTRACT

Human exposure to carbon nanotubes (CNT) has been associated with the development of pulmonary sarcoid-like granulomatous disease. Our previous studies demonstrated that multi-walled carbon nanotubes (MWCNT) induced chronic pulmonary granulomatous inflammation in mice. Granuloma formation was accompanied by decreased peroxisome proliferator-activated receptor gamma (PPARγ) and disrupted intracellular lipid homeostasis in alveolar macrophages. Others have shown that PPARγ activation increases mitochondrial fatty acid oxidation (FAO) to reduce free fatty acid accumulation. Hence, we hypothesized that the disrupted lipid metabolism suppresses mitochondrial FAO. To test our hypothesis, C57BL/6 J mice were instilled by an oropharyngeal route with 100 µg MWCNT freshly suspended in 35 % Infasurf. Control sham mice received vehicle alone. Sixty days following instillation, mitochondrial FAO was measured in permeabilized bronchoalveolar lavage (BAL) cells. MWCNT instillation reduced the mitochondrial oxygen consumption rate of BAL cells in the presence of palmitoyl-carnitine as mitochondrial fuel. MWCNT also reduced mRNA expression of mitochondrial genes regulating FAO, carnitine palmitoyl transferase-1 (CPT1), carnitine palmitoyl transferase-2 (CPT2), hydroxyacyl-CoA dehydrogenase subunit beta (HADHB), and PPARγ coactivator 1 alpha (PPARGC1A). Importantly, both oxidative stress and apoptosis in alveolar macrophages and lung tissues of MWCNT-instilled mice were increased. Because macrophage PPARγ expression has been reported to be controlled by miR-27b which is known to induce oxidative stress and apoptosis, we measured the expression of miR-27b. Results indicated elevated levels in alveolar macrophages from MWCNT-instilled mice compared to controls. Given that inhibition of FAO and apoptosis are linked to M1 and M2 macrophage activation, respectively, the expression of both M1 and M2 key indicator genes were measured. Interestingly, results showed that both M1 and M2 phenotypes of alveolar macrophages were activated in MWCNT-instilled mice. In conclusion, alveolar macrophages of MWCNT-instilled mice had increased miR-27b expression, which may reduce the expression of PPARγ resulting in attenuation of FAO. This reduction in FAO may lead to activation of M1 macrophages. The upregulation of miR-27b may also induce apoptosis, which in turn can cause M2 activation of alveolar macrophages. These observations indicate a possible role of miR-27b in impaired mitochondrial function in the chronic activation of alveolar macrophages by MWCNT and the development of chronic pulmonary granulomatous inflammation.


Subject(s)
Granulomatous Disease, Chronic/chemically induced , Lung Diseases/chemically induced , Macrophages, Alveolar/drug effects , Mitochondria/drug effects , Nanotubes, Carbon/toxicity , Animals , Granulomatous Disease, Chronic/metabolism , Granulomatous Disease, Chronic/pathology , Lung Diseases/metabolism , Lung Diseases/pathology , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/pathology , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Mitochondria/metabolism , Mitochondria/pathology , Oxidative Stress/drug effects , Oxidative Stress/physiology
14.
Environ Int ; 145: 106115, 2020 12.
Article in English | MEDLINE | ID: mdl-32949878

ABSTRACT

The last two decades have seen a rise in the development of lanthanum (III)-containing materials (LM) for controlling phosphate in the aquatic environment. >70 papers have been published on this topic in the peer-reviewed literature, but mechanisms of phosphate removal by LM as well as potential environmental impacts of LM remain unclear. In this review, we summarize peer-reviewed scientific articles on the development and use of 80 different types of LM in terms of prospective benefits, potential ecological impacts, and research needs. We find that the main benefits of LM for phosphate removal are their ability to strongly bind phosphate under diverse environmental conditions (e.g., over a wide pH range, in the presence of diverse aqueous constituents). The maximum phosphate uptake capacity of LM correlates primarily with the La content of LM, whereas reaction kinetics are influenced by LM formulation and ambient environmental conditions (e.g., pH, presence of co-existing ions, ligands, organic matter). Increased La solubilization can occur under some environmental conditions, including at moderately acidic pH values (i.e., < 4.5-5.6), highly saline conditions, and in the presence of organic matter. At the same time, dissolved La will likely undergo hydrolysis, bind to organic matter, and combine with phosphate to precipitate rhabdophane (LaPO4·H2O), all of which reduce the bioavailability of La in aquatic environments. Overall, LM use presents a low risk of adverse effects in water with pH > 7 and moderate-to-high bicarbonate alkalinity, although caution should be applied when considering LM use in aquatic systems with acidic pH values and low bicarbonate alkalinity. Moving forward, we recommend additional research dedicated to understanding La release from LM under diverse environmental conditions as well as long-term exposures on ecological organisms, particularly primary producers and benthic organisms. Further, site-specific monitoring could be useful for evaluating potential impacts of LM on both biotic and abiotic systems post-application.


Subject(s)
Lanthanum , Water Pollutants, Chemical , Adsorption , Kinetics , Phosphates , Prospective Studies , Water
15.
ACS Appl Mater Interfaces ; 11(48): 45155-45160, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31701737

ABSTRACT

Additive manufacturing has dramatically transformed the design and fabrication of advanced objects. Printed electronics-an additive thin-film processing technology-aims to realize low-cost, large-area electronics, and fabrication of devices with highly customized architectures. Recent advances in printing technology have led to several innovative applications; however, layer-on-layer deposition persists as a challenging issue. Here, the additive manufacturing of functional oxide devices by inkjet printing is presented. Two conditions appear critical for successful layer-on-layer printing: (i) preservation of stable surface properties and (ii) suppression of the material accumulation at the edges of a feature upon drying. The former condition was satisfied by introducing a surface modification layer of a polymer with nanotextured topography, and the latter was satisfied by designing the solvent composition of the ink. The developed process is highly efficient and enables conformal stacking of functional oxide layers according to the user-defined geometry, sequence arrangement, and layer thickness. To prove the effectiveness of this concept, we demonstrate an additive manufacture of all-oxide ferroelectric multilayer capacitors/transducers. Printed multilayer devices offer a significant increase in the capacitance density and the electromechanical voltage response in comparison to the single-layer devices. Further growth in the number of available functional oxide inks will enable arbitrary device architectures with novel functionalities.

17.
Technometrics ; 61(4): 494-506, 2019.
Article in English | MEDLINE | ID: mdl-31723308

ABSTRACT

Motivated by the problem of detecting changes in two-dimensional X-ray diffraction data, we propose a Bayesian spatial model for sparse signal detection in image data. Our model places considerable mass near zero and has heavy tails to reflect the prior belief that the image signal is zero for most pixels and large for an important subset. We show that the spatial prior places mass on nearby locations simultaneously being zero, and also allows for nearby locations to simultaneously be large signals. The form of the prior also facilitates efficient computing for large images. We conduct a simulation study to evaluate the properties of the proposed prior and show that it outperforms other spatial models. We apply our method in the analysis of X-ray diffraction data from a two-dimensional area detector to detect changes in the pattern when the material is exposed to an electric field.

18.
Am J Respir Cell Mol Biol ; 61(2): 198-208, 2019 08.
Article in English | MEDLINE | ID: mdl-30741559

ABSTRACT

We established a murine model of multiwall carbon nanotube (MWCNT)-elicited chronic granulomatous disease that bears similarities to human sarcoidosis pathology, including alveolar macrophage deficiency of peroxisome proliferator-activated receptor γ (PPARγ). Because lymphocyte reactivity to mycobacterial antigens has been reported in sarcoidosis, we hypothesized that addition of mycobacterial ESAT-6 (early secreted antigenic target protein 6) to MWCNT might exacerbate pulmonary granulomatous pathology. MWCNTs with or without ESAT-6 peptide 14 were instilled by the oropharyngeal route into macrophage-specific PPARγ-knockout (KO) or wild-type mice. Control animals received PBS or ESAT-6. Lung tissues, BAL cells, and BAL fluid were evaluated 60 days after instillation. PPARγ-KO mice receiving MWCNT + ESAT-6 had increased granulomas and significantly elevated fibrosis (trichrome staining) compared with wild-type mice or PPARγ-KO mice that received only MWCNT. Immunostaining of lung tissues revealed elevated fibronectin and Siglec F expression on CD11c+ infiltrating alveolar macrophages in the presence of MWCNT + ESAT-6 compared with MWCNT alone. Analyses of BAL fluid proteins indicated increased levels of transforming growth factor (TGF)-ß and the TGF-ß pathway mediator IL-13 in PPARγ-KO mice that received MWCNT + ESAT-6 compared with wild-type or PPARγ-KO mice that received MWCNT. Similarly, mRNA levels of matrix metalloproteinase 9, another requisite factor for TGF-ß production, was elevated in PPARγ-KO mice by MWCNT + ESAT-6. Analysis of ESAT-6 in lung tissues by mass spectrometry revealed ESAT-6 retention in lung tissues of PPARγ-KO but not wild-type mice. These data indicate that PPARγ deficiency promotes pulmonary ESAT-6 retention, exacerbates macrophage responses to MWCNT + ESAT-6, and intensifies pulmonary fibrosis. The present findings suggest that the model may facilitate understanding of the effects of environmental factors on sarcoidosis-associated pulmonary fibrosis.


Subject(s)
Antigens, Bacterial/pharmacology , Bacterial Proteins/pharmacology , Macrophages, Alveolar/metabolism , PPAR gamma/deficiency , Pulmonary Fibrosis/microbiology , Sarcoidosis, Pulmonary/microbiology , Animals , Bronchoalveolar Lavage , Bronchoalveolar Lavage Fluid , CD11 Antigens/metabolism , Disease Models, Animal , Fibronectins/metabolism , Fibrosis/metabolism , Inflammation , Lung/pathology , Macrophages/metabolism , Mass Spectrometry , Mice , Mice, Inbred C57BL , Mice, Knockout , Nanotubes, Carbon/chemistry , PPAR gamma/genetics , Pulmonary Fibrosis/genetics , Sarcoidosis, Pulmonary/pathology
19.
Rev Sci Instrum ; 89(9): 092905, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30278694

ABSTRACT

Characterizing the structural response of functional materials (e.g., piezoelectrics and ferroelectrics) to electric fields is key for the creation of structure-property relationships. Here, we present a new sample environment and data reduction routines which allow the measurement of time-of-flight neutron total scattering during the in situ or ex situ application of high voltage (<10 kV) to a sample. Instead of utilizing the entire detector space of the diffractometer, only selected regions of detector pixels with scattering at the desired angle to the sample electric field are interrogated, which allows the generation of orientation-dependent reciprocal space patterns and real-space pair distribution functions (PDFs). We demonstrate the method using the relaxor ferroelectric Na1/2Bi1/2TiO3 and observe lattice expansion parallel and contraction perpendicular to the electric field for both in situ and ex situ experiments, revealing the irreversible nature of the local scale structural changes to this composition. Additionally, changes in the distributions of nearest neighbor metal-oxygen bond lengths are observed, which have been difficult to observe in previously measured analogous orientation-dependent X-ray PDFs. Considerations related to sample positioning and background subtraction are discussed, and future research directions are suggested.

20.
Sci Rep ; 8(1): 4120, 2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29515168

ABSTRACT

Large piezoelectric coefficients in polycrystalline lead zirconate titanate (PZT) are traditionally achieved through compositional design using a combination of chemical substitution with a donor dopant and adjustment of the zirconium to titanium compositional ratio to meet the morphotropic phase boundary (MPB). In this work, a different route to large piezoelectricity is demonstrated. Results reveal unexpectedly high piezoelectric coefficients at elevated temperatures and compositions far from the MPB. At temperatures near the Curie point, doping with 2 at% Sm results in exceptionally large piezoelectric coefficients of up to 915 pm/V. This value is approximately twice those of other donor dopants (e.g., 477 pm/V for Nb and 435 pm/V for La). Structural changes during the phase transitions of Sm-doped PZT show a pseudo-cubic phase forming ≈50 °C below the Curie temperature. Possible origins of these effects are discussed and the high piezoelectricity is posited to be due to extrinsic effects. The enhancement of the mechanism at elevated temperatures is attributed to the coexistence of tetragonal and pseudo-cubic phases, which enables strain accommodation during electromechanical deformation and interphase boundary motion. This work provides insight into possible routes for designing high performance piezoelectrics which are alternatives to traditional methods relying on MPB compositions.

SELECTION OF CITATIONS
SEARCH DETAIL
...