Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2558, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519509

ABSTRACT

Encapsulins are self-assembling protein nanocompartments capable of selectively encapsulating dedicated cargo proteins, including enzymes involved in iron storage, sulfur metabolism, and stress resistance. They represent a unique compartmentalization strategy used by many pathogens to facilitate specialized metabolic capabilities. Encapsulation is mediated by specific cargo protein motifs known as targeting peptides (TPs), though the structural basis for encapsulation of the largest encapsulin cargo class, dye-decolorizing peroxidases (DyPs), is currently unknown. Here, we characterize a DyP-containing encapsulin from the enterobacterial pathogen Klebsiella pneumoniae. By combining cryo-electron microscopy with TP and TP-binding site mutagenesis, we elucidate the molecular basis for cargo encapsulation. TP binding is mediated by cooperative hydrophobic and ionic interactions as well as shape complementarity. Our results expand the molecular understanding of enzyme encapsulation inside protein nanocompartments and lay the foundation for rationally modulating encapsulin cargo loading for biomedical and biotechnological applications.


Subject(s)
Bacterial Proteins , Peroxidase , Bacterial Proteins/metabolism , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Cryoelectron Microscopy , Peroxidases/metabolism
2.
bioRxiv ; 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37790520

ABSTRACT

Encapsulins are self-assembling protein nanocompartments capable of selectively encapsulating dedicated cargo proteins, including enzymes involved in iron storage, sulfur metabolism, and stress resistance. They represent a unique compartmentalization strategy used by many pathogens to facilitate specialized metabolic capabilities. Encapsulation is mediated by specific cargo protein motifs known as targeting peptides (TPs), though the structural basis for encapsulation of the largest encapsulin cargo class, dye-decolorizing peroxidases (DyPs), is currently unknown. Here, we characterize a DyP-containing encapsulin from the enterobacterial pathogen Klebsiella pneumoniae. By combining cryo-electron microscopy with TP mutagenesis, we elucidate the molecular basis for cargo encapsulation. TP binding is mediated by cooperative hydrophobic and ionic interactions as well as shape complementarity. Our results expand the molecular understanding of enzyme encapsulation inside protein nanocompartments and lay the foundation for rationally modulating encapsulin cargo loading for biomedical and biotechnological applications.

3.
J Mater Chem B ; 11(20): 4377-4388, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37158413

ABSTRACT

Encapsulins are a recently discovered class of prokaryotic self-assembling icosahedral protein nanocompartments measuring between 24 and 42 nm in diameter, capable of selectively encapsulating dedicated cargo proteins in vivo. They have been classified into four families based on sequence identity and operon structure, and thousands of encapsulin systems have recently been computationally identified across a wide range of bacterial and archaeal phyla. Cargo encapsulation is mediated by the presence of specific targeting motifs found in all native cargo proteins that interact with the interior surface of the encapsulin shell during self-assembly. Short C-terminal targeting peptides (TPs) are well documented in Family 1 encapsulins, while more recently, larger N-terminal targeting domains (TDs) have been discovered in Family 2. The modular nature of TPs and their facile genetic fusion to non-native cargo proteins of interest has made cargo encapsulation, both in vivo and in vitro, readily exploitable and has therefore resulted in a range of rationally engineered nano-compartmentalization systems. This review summarizes current knowledge on cargo protein encapsulation within encapsulins and highlights select studies that utilize TP fusions to non-native cargo in creative and useful ways.


Subject(s)
Bacteria , Bacterial Proteins , Humans , Bacterial Proteins/metabolism , Bacteria/metabolism
4.
Biomacromolecules ; 24(3): 1388-1399, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36796007

ABSTRACT

Encapsulins are microbial protein nanocages capable of efficient self-assembly and cargo enzyme encapsulation. Due to their favorable properties, including high thermostability, protease resistance, and robust heterologous expression, encapsulins have become popular bioengineering tools for applications in medicine, catalysis, and nanotechnology. Resistance against physicochemical extremes like high temperature and low pH is a highly desirable feature for many biotechnological applications. However, no systematic search for acid-stable encapsulins has been carried out, while the influence of pH on encapsulin shells has so far not been thoroughly explored. Here, we report on a newly identified encapsulin nanocage from the acid-tolerant bacterium Acidipropionibacterium acidipropionici. Using transmission electron microscopy, dynamic light scattering, and proteolytic assays, we demonstrate its extreme acid tolerance and resilience against proteases. We structurally characterize the novel nanocage using cryo-electron microscopy, revealing a dynamic five-fold pore that displays distinct "closed" and "open" states at neutral pH but only a singular "closed" state under strongly acidic conditions. Further, the "open" state exhibits the largest pore in an encapsulin shell reported to date. Non-native protein encapsulation capabilities are demonstrated, and the influence of external pH on internalized cargo is explored. Our results expand the biotechnological application range of encapsulin nanocages toward potential uses under strongly acidic conditions and highlight pH-responsive encapsulin pore dynamics.


Subject(s)
Bacteria , Bacterial Proteins , Bacterial Proteins/chemistry , Cryoelectron Microscopy , Bacteria/metabolism , Biotechnology , Nanotechnology
5.
Angew Chem Int Ed Engl ; 60(47): 25034-25041, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34532937

ABSTRACT

Protein nanocages play crucial roles in sub-cellular compartmentalization and spatial control in all domains of life and have been used as biomolecular tools for applications in biocatalysis, drug delivery, and bionanotechnology. The ability to control their assembly state under physiological conditions would further expand their practical utility. To gain such control, we introduced a peptide capable of triggering conformational change at a key structural position in the largest known encapsulin nanocompartment. We report the structure of the resulting engineered nanocage and demonstrate its ability to disassemble and reassemble on demand under physiological conditions. We demonstrate its capacity for in vivo encapsulation of proteins of choice while also demonstrating in vitro cargo loading capabilities. Our results represent a functionally robust addition to the nanocage toolbox and a novel approach for controlling protein nanocage disassembly and reassembly under mild conditions.


Subject(s)
Nanoparticles/chemistry , Protein Engineering , Proteins/chemistry , Models, Molecular
6.
Biotechnol Bioeng ; 118(1): 491-505, 2021 01.
Article in English | MEDLINE | ID: mdl-32918485

ABSTRACT

Compartmentalization is an essential feature of all cells. It allows cells to segregate and coordinate physiological functions in a controlled and ordered manner. Different mechanisms of compartmentalization exist, with the most relevant to prokaryotes being encapsulation via self-assembling protein-based compartments. One widespread example of such is that of encapsulins-cage-like protein nanocompartments able to compartmentalize specific reactions, pathways, and processes in bacteria and archaea. While still relatively nascent bioengineering tools, encapsulins exhibit many promising characteristics, including a number of defined compartment sizes ranging from 24 to 42 nm, straightforward expression, the ability to self-assemble via the Hong Kong 97-like fold, marked physical robustness, and internal and external handles primed for rational genetic and molecular manipulation. Moreover, encapsulins allow for facile and specific encapsulation of native or heterologous cargo proteins via naturally or rationally fused targeting peptide sequences. Taken together, the attributes of encapsulins promise substantial customizability and broad usability. This review discusses recent advances in employing engineered encapsulins across various fields, from their use as bionanoreactors to targeted delivery systems and beyond. A special focus will be provided on the rational engineering of encapsulin systems and their potential promise as biomolecular research tools.


Subject(s)
Archaea , Archaeal Proteins , Bacteria , Bacterial Proteins , Nanostructures/chemistry , Peptides , Protein Engineering , Recombinant Fusion Proteins , Archaea/chemistry , Archaea/genetics , Archaea/metabolism , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Bacteria/chemistry , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Peptides/chemistry , Peptides/genetics , Peptides/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
7.
Biochem Biophys Res Commun ; 516(2): 333-338, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31204053

ABSTRACT

Herein we report the first structure of topoisomerase I determined from the gram-positive bacterium, S. mutans. Bacterial topoisomerase I is an ATP-independent type 1A topoisomerase that uses the inherent torsional strain within hyper-negatively supercoiled DNA as an energy source for its critical function of DNA relaxation. Interest in the enzyme has gained momentum as it has proven to be essential in various bacterial organisms. In order to aid in further biochemical characterization, the apo 65-kDa amino-terminal fragment of DNA topoisomerase I from the gram-positive model organism Streptococcus mutans was crystalized and a three-dimensional structure was determined to 2.06 Šresolution via x-ray crystallography. The overall structure illustrates the four classic major domains that create the traditional topoisomerase I "lock" formation comprised of a sizable toroidal aperture atop what is considered to be a highly dynamic body. A catalytic tyrosine residue resides at the interface between two domains and is known to form a 5' phosphotyrosine DNA-enzyme intermediate during transient single-stranded cleavage required for enzymatic relaxation of hyper negative DNA supercoils. Surrounding the catalytic tyrosine residue is the remainder of the highly conserved active site. Within 5 Šfrom the catalytic center, only one dissimilar residue is observed between topoisomerase I from S. mutans and the gram-negative model organism E. coli. Immediately adjacent to the conserved active site, however, S. mutans topoisomerase I displays a somewhat unique nine residue loop extension not present in any bacterial topoisomerase I structures previously determined other than that of an extremophile.


Subject(s)
DNA Topoisomerases, Type I/chemistry , Streptococcus mutans/enzymology , Amino Acid Sequence , Crystallization , Crystallography, X-Ray , Models, Molecular
8.
ACS Chem Biol ; 14(7): 1528-1535, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31184849

ABSTRACT

Clostridioides difficile infection (CDI) is a leading cause of significant morbidity, mortality, and healthcare-related costs in the United States. After standard therapy, recurrence rates remain high, and multiple recurrences are not uncommon. Causes include treatments employing broad-spectrum agents that disrupt the normal host microbiota, as well as treatment-resistant spore formation by C. difficile. Thus, novel druggable anti-C. difficile targets that promote narrow-spectrum eradication and inhibition of sporulation are desired. As a critical rate-limiting step within the FAS-II bacterial fatty acid synthesis pathway, which supplies precursory component phospholipids found in bacterial cytoplasmic and spore-mediated membranes, enoyl-acyl carrier protein (ACP) reductase II (FabK) represents such a target. FabK is essential in C. difficile (CdFabK) and is structurally and mechanistically distinct from other isozymes found in gut microbiota species, making CdFabK an attractive narrow-spectrum target. We report here the kinetic evaluation of CdFabK, the biochemical activity of a series of phenylimidazole analogues, and microbiological data suggesting these compounds' selective antibacterial activity against C. difficile versus several other prominent gut organisms. The compounds display promising, selective, low micromolar CdFabK inhibitory activity without significantly affecting the growth of other gut organisms, and the series prototype (1b) is shown to be competitive for the CdFabK cofactor and uncompetitive for the substrate. A series analogue (1g) shows maintained inhibitory activity while also possessing increased solubility. These findings represent the basis for future drug discovery efforts by characterizing the CdFabK enzyme while demonstrating its druggability and potential role as a narrow-spectrum antidifficile target.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Clostridioides difficile/drug effects , Clostridioides difficile/enzymology , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/antagonists & inhibitors , Clostridioides difficile/chemistry , Clostridioides difficile/metabolism , Clostridium Infections/drug therapy , Clostridium Infections/microbiology , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/chemistry , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/metabolism , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Molecular Docking Simulation , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Structure-Activity Relationship
9.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 4): 217-226, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30950821

ABSTRACT

An iron-containing alcohol dehydrogenase (FeADH) from the hyperthermophilic archaeon Thermococcus thioreducens was crystallized in unit cells belonging to space groups P21, P212121 and P43212, and the crystal structures were solved at 2.4, 2.1 and 1.9 Šresolution, respectively, by molecular replacement using the FeADH from Thermotoga maritima (Schwarzenbacher et al., 2004) as a model. In the monoclinic and orthorhombic crystals the dehydrogenase (molecular mass 41.5 kDa) existed as a dimer containing a twofold noncrystallographic symmetry axis, which was crystallographic in the tetragonal crystals. In the monoclinic and orthorhombic asymmetric units one molecule contained iron and an NADP molecule, while the other did not. The tetragonal crystals lacked both iron and NADP. The structure is very similar to that of the FeADH from T. maritima (average r.m.s. difference for Cα atoms of 1.8 Šfor 341 aligned atoms). The iron, which is internally sequestered, is bound entirely by amino acids from one domain: three histidines and one aspartic acid. The coenzyme is in an extended conformation, a feature that is common to the large superfamily of NADH-dependent dehydrogenases that share a classical nucleotide-binding domain. A long broad tunnel passes entirely through the enzyme between the two domains, completely encapsulating the coenzyme.


Subject(s)
Alcohol Dehydrogenase/chemistry , Iron/metabolism , Temperature , Thermococcus/enzymology , Binding Sites , Catalytic Domain , Coenzymes/metabolism , Crystallography, X-Ray
10.
ACS Infect Dis ; 5(2): 208-217, 2019 02 08.
Article in English | MEDLINE | ID: mdl-30501172

ABSTRACT

Clostridium difficile infection (CDI) is an antibiotic-induced microbiota shift disease of the large bowel. While there is a need for narrow-spectrum CDI antibiotics, it is unclear which cellular proteins are appropriate drug targets to specifically inhibit C. difficile. We evaluated the enoyl-acyl carrier protein (ACP) reductase II (FabK), which catalyzes the final step of bacterial fatty acid biosynthesis. Bioinformatics showed that C. difficile uses FabK as its sole enoyl-ACP reductase, unlike several major microbiota species. The essentiality of fabK for C. difficile growth was confirmed by failure to delete this gene using ClosTron mutagenesis and by growth inhibition upon gene silencing with CRISPR interference antisense to fabK transcription or by blocking protein translation. Inhibition of C. difficile's FASII pathway could not be circumvented by supply of exogenous fatty acids, either during fabK's gene silencing or upon inhibition of the enzyme with a phenylimidazole-derived inhibitor (1). The inability of fatty acids to bypass FASII inhibition is likely due to the function of the transcriptional repressor FapR. Inhibition of FabK also inhibited spore formation, reflecting the enzyme's role in de novo fatty acid biosynthesis for the formation of spore membrane lipids. Compound 1 did not inhibit growth of key microbiota species. These findings suggest that C. difficile FabK is a druggable target for discovering narrow-spectrum anti- C. difficile drugs that treat CDI but avoid collateral damage to the gut microbiota.


Subject(s)
Anti-Bacterial Agents/pharmacology , Clostridioides difficile/drug effects , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/antagonists & inhibitors , Biosynthetic Pathways , CRISPR-Cas Systems , Clostridioides difficile/enzymology , Clostridioides difficile/genetics , Crystallography, X-Ray , DNA, Antisense , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/genetics , Fatty Acids/biosynthesis , Gene Silencing
11.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 2): 105-112, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29400320

ABSTRACT

Enoyl-acyl carrier protein (ACP) reductase II (FabK) is a critical rate-limiting enzyme in the bacterial type II fatty-acid synthesis (FAS II) pathway. FAS II pathway enzymes are markedly disparate from their mammalian analogs in the FAS I pathway in both structure and mechanism. Enzymes involved in bacterial fatty-acid synthesis represent viable drug targets for Gram-negative pathogens, and historical precedent exists for targeting them in the treatment of diseases of the oral cavity. The Gram-negative organism Porphyromonas gingivalis represents a key causative agent of the costly and highly prevalent disease known as chronic periodontitis, and exclusively expresses FabK as its enoyl reductase enzyme in the FAS-II pathway. Together, these characteristics distinguish P. gingivalis FabK (PgFabK) as an attractive and novel narrow-spectrum antibacterial target candidate. PgFabK is a flavoenzyme that is dependent on FMN and NADPH as cofactors for the enzymatic reaction, which reduces the enoyl substrate via a ping-pong mechanism. Here, the structure of the PgFabK enzyme as determined using X-ray crystallography is reported to 1.9 Šresolution with endogenous FMN fully resolved and the NADPH cofactor partially resolved. PgFabK possesses a TIM-barrel motif, and all flexible loops are visible. The determined structure has allowed insight into the structural basis for the NADPH dependence observed in PgFabK and the role of a monovalent cation that has been observed in previous studies to be stringently required for FabK activity. The PgFabK structure and the insights gleaned from its analysis will facilitate structure-based drug-discovery efforts towards the prevention and treatment of P. gingivalis infection.


Subject(s)
Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/chemistry , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/genetics , Porphyromonas gingivalis/enzymology , Porphyromonas gingivalis/genetics , Amino Acid Sequence , Cell Line , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/isolation & purification , Humans , Protein Structure, Secondary , X-Ray Diffraction/methods
12.
Medchemcomm ; 7(9): 1694-1715, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27642504

ABSTRACT

This review discusses next-generation antibacterial agents developed using rational, or targeted, drug design strategies. The focus of this review is on small-molecule compounds that have been designed to bypass developing bacterial resistance, improve the antibacterial spectrum of activity, and/or to optimize other properties, including physicochemical and pharmacokinetic properties. Agents are discussed that affect known antibacterial targets, such as the bacterial ribosome, nucleic acid binding proteins, and proteins involved in cell-wall biosynthesis; as well as some affecting novel bacterial targets which do not have currently marketed agents. The discussion of the agents focuses on the rational design strategies employed and the synthetic medicinal chemistry and structure-based design techniques utilized by the scientists involved in the discoveries, including such methods as ligand- and structure-based strategies, structure-activity relationship (SAR) expansion strategies, and novel synthetic organic chemistry methods. As such, the discussion is limited to small-molecule therapeutics that have confirmed macromolecular targets and encompasses only a fraction of all antibacterial agents recently approved or in late-stage clinical trials. The antibacterial agents selected have been recently approved for use on the U.S. or European markets or have shown promising results in phase 2 or phase 3 U.S.

13.
Protein Expr Purif ; 124: 32-40, 2016 08.
Article in English | MEDLINE | ID: mdl-27117979

ABSTRACT

Type IA topoisomerases represent promising antibacterial drug targets. Data exists suggesting that the two bacterial type IA topoisomerase enzymes-topoisomerase I and topoisomerase III-share an overlapping biological role. Furthermore, topoisomerase I has been shown to be essential for the survival of certain organisms lacking topoisomerase III. With this in mind, it is plausible that topoisomerase I may represent a potential target for selective antibacterial drug development. As many reported bacterial topoisomerase I purification protocols have either suffered from relatively low yield, numerous steps, or a simple failure to report target protein yield altogether, a high-yield and high-purity bacterial topoisomerase I expression and purification protocol is highly desirable. The goal of this study was therefore to optimize the expression and purification of topoisomerase I from Streptococcus mutans, a clinically relevant organism that plays a significant role in oral and extra-oral infection, in order to quickly and easily attain the requisite quantities of pure target enzyme suitable for use in assay development, compound library screening, and carrying out further structural and biochemical characterization analyses. Herein we report the systematic implementation and analysis of various expression and purification techniques leading to the development and optimization of a rapid and straightforward protocol for the auto-induced expression and two-step, affinity tag purification of Streptococcus mutans topoisomerase I yielding >20 mg/L of enzyme at over 95% purity.


Subject(s)
Bacterial Proteins , DNA Topoisomerases, Type I , Gene Expression , Streptococcus mutans/enzymology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , DNA Topoisomerases, Type I/biosynthesis , DNA Topoisomerases, Type I/chemistry , DNA Topoisomerases, Type I/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...