Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; 77(3): 422-32, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-19027720

ABSTRACT

The characterization of the potent p38 inhibitor BIRB796 as a dual inhibitor of p38/Jun N-terminal kinases (JNK) mitogen-activated protein kinases (EC 2.7.11.24) has complicated the interpretation of its reported anti-inflammatory activity. To better understand the contribution of JNK2 inhibition to the anti-inflammatory activities of BIRB796, we explored the relationship between the effects of BIRB796 and analogues on cytokine production and on cellular p38 and JNK signaling. We determined the binding affinity for BIRB796 and structural analogues to p38alpha and JNK2 and characterized compound 2 as a p38 inhibitor that binds to p38alpha with an affinity equivalent to BIRB796 but does not bind to any of the JNK isoforms. High-content imaging enabled us to show that the inhibition of p38 signaling by BIRB796 and analogues correlates with the ability of these compounds to inhibit the lipopolysaccharide (LPS)-induced TNF-alpha production in THP-1 monocytes. This finding was extended to cytokine release by disease-relevant human primary cells: to the production of TNF-alpha by peripheral blood mononuclear cells, and of IL-8 by neutrophils. Furthermore, BIRB796 and compound 2 inhibited the production of TNF-alpha in THP-1 monocytes and the IL-12/IL-18-induced production of interferon-gamma in human T-cells with similar potencies. In contrast, cellular JNK signaling in response to cytokines or stress stimuli was only weakly inhibited by BIRB796 and analogues and not affected by compound 2. In summary, our data suggest that p38 inhibition alone is sufficient to completely suppress cytokine production and that the added inhibition of JNK2 does not significantly contribute to the effects of BIRB796 on cytokine production.


Subject(s)
Cytokines/biosynthesis , Inflammation Mediators/metabolism , Mitogen-Activated Protein Kinase 9/antagonists & inhibitors , Naphthalenes/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Signal Transduction/drug effects , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , HeLa Cells , Humans
2.
J Biomol Screen ; 13(5): 424-9, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18567842

ABSTRACT

A recently developed nanotechnology, the Integral Molecular lipoparticle, provides an essentially soluble cell-free system in which G-protein-coupled receptors (GPCRs) in their native conformations are concentrated within virus-like particles. As a result, the lipoparticle provides a means to overcome 2 common obstacles to the development of homogeneous, nonradioactive GPCR ligand-binding assays: membrane protein solubilization and low receptor density. The work reported here describes the first application of this nanotechnology to a fluorescence polarization (FP) molecular binding assay format. The GPCR chosen for these studies was the well-studied chemokine receptor CXCR4 for which a peptide ligand (T-22) has been previously characterized. The EC50 determined for the CXCR4-T-22 peptide interaction via FP with CXCR4 lipoparticles (15 nM) is consistent with the IC50 determined for the unlabeled T-22 peptide via competitive binding (59 nM).


Subject(s)
Fluorescence Polarization/methods , Nanotechnology/methods , Receptors, G-Protein-Coupled/chemistry , Cell-Free System
3.
J Biomol Screen ; 12(1): 70-83, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17166826

ABSTRACT

Numerous assay methods have been developed to identify small-molecule effectors of protein kinases, but no single method can be applied to all isolated kinases. The authors developed a set of 3 high-throughput screening (HTS)-compatible biochemical assays that can measure 3 mechanistically distinct properties of a kinase active site, with the goal that at least 1 of the 3 would be applicable to any kinase selected as a target for drug discovery efforts. Two assays measure catalytically active enzyme: A dissociation-enhanced lanthanide fluoroimmuno assay (DELFIA) uses an antibody to quantitate the generation of phosphorylated substrate; a second assay uses luciferase to measure the consumption of adenosine triphosphate (ATP) during either phosphoryl-transfer to a peptide substrate or to water (intrinsic ATPase activity). A third assay, which is not dependent on a catalytically active enzyme, measures the competition for binding to kinase between an inhibitor and a fluorescent ATP binding site probe. To evaluate the suitability of these assays for drug discovery, the authors compared their ability to identify inhibitors of a nonreceptor protein tyrosine kinase from the Tec family, interleukin-2-inducible T cell kinase (ITK). The 3 assays agreed on 57% of the combined confirmed hit set identified from screening a 10,208-compound library enriched with known kinase inhibitors and molecules that were structurally similar. Among the 3 assays, the one measuring intrinsic ATPase activity produced the largest number of unique hits, the fewest unique misses, and the most comprehensive hit set, missing only 2.7% of the confirmed inhibitors identified by the other 2 assays combined. Based on these data, all 3 assay formats are viable for screening and together provide greater options for assay design depending on the targeted kinase.


Subject(s)
Adenosine Triphosphatases/metabolism , Biological Assay/methods , Protein Kinase Inhibitors/analysis , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Binding Sites/drug effects , Fluorescent Dyes/chemistry , Humans , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...