Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
GigaByte ; 2023: gigabyte100, 2023.
Article in English | MEDLINE | ID: mdl-38090598

ABSTRACT

Rodents, a globally distributed and ecologically important mammalian order, serve as hosts for various zoonotic pathogens. However, sampling of rodents and their pathogens suffers from taxonomic and spatial biases. This affects consolidated databases, such as IUCN and GBIF, limiting inference regarding the spillover hazard of zoonotic pathogens into human populations. Here, we synthesised data from 127 rodent trapping studies conducted in 14 West African countries between 1964 and 2022. We combined occurrence data with pathogen screening results to produce a dataset containing detection/non-detection data for 65,628 individual small mammals identified to the species level from at least 1,611 trapping sites. We also included 32 microorganisms, identified to the species or genus levels, that are known or potential pathogens. The dataset is formatted to Darwin Core Standard with associated metadata. This dataset can mitigate spatial and taxonomic biases of current databases, improving understanding of rodent-associated zoonotic pathogen spillover across West Africa.

2.
PLoS Negl Trop Dis ; 17(7): e0011450, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37450491

ABSTRACT

Anthropogenic land-use change, such as deforestation and urban development, can affect the emergence and re-emergence of mosquito-borne diseases, e.g., dengue and malaria, by creating more favourable vector habitats. There has been a limited assessment of how mosquito vectors respond to land-use changes, including differential species responses, and the dynamic nature of these responses. Improved understanding could help design effective disease control strategies. We compiled an extensive dataset of 10,244 Aedes and Anopheles mosquito abundance records across multiple land-use types at 632 sites in Latin America and the Caribbean. Using a Bayesian mixed effects modelling framework to account for between-study differences, we compared spatial differences in the abundance and species richness of mosquitoes across multiple land-use types, including agricultural and urban areas. Overall, we found that mosquito responses to anthropogenic land-use change were highly inconsistent, with pronounced responses observed at the genus- and species levels. There were strong declines in Aedes (-26%) and Anopheles (-35%) species richness in urban areas, however certain species such as Aedes aegypti, thrived in response to anthropogenic disturbance. When abundance records were coupled with remotely sensed forest loss data, we detected a strong positive response of dominant and secondary malaria vectors to recent deforestation. This highlights the importance of the temporal dynamics of land-use change in driving disease risk and the value of large synthetic datasets for understanding changing disease risk with environmental change.


Subject(s)
Aedes , Anopheles , Malaria , Animals , Mosquito Vectors , Latin America , Bayes Theorem , Aedes/physiology , Anopheles/physiology , Caribbean Region
3.
PLoS Negl Trop Dis ; 17(1): e0010772, 2023 01.
Article in English | MEDLINE | ID: mdl-36689474

ABSTRACT

Rodents, a diverse, globally distributed and ecologically important order of mammals are nevertheless important reservoirs of known and novel zoonotic pathogens. Ongoing anthropogenic land use change is altering these species' abundance and distribution, which among zoonotic host species may increase the risk of zoonoses spillover events. A better understanding of the current distribution of rodent species is required to guide attempts to mitigate against potentially increased zoonotic disease hazard and risk. However, available species distribution and host-pathogen association datasets (e.g. IUCN, GBIF, CLOVER) are often taxonomically and spatially biased. Here, we synthesise data from West Africa from 127 rodent trapping studies, published between 1964-2022, as an additional source of information to characterise the range and presence of rodent species and identify the subgroup of species that are potential or known pathogen hosts. We identify that these rodent trapping studies, although biased towards human dominated landscapes across West Africa, can usefully complement current rodent species distribution datasets and we calculate the discrepancies between these datasets. For five regionally important zoonotic pathogens (Arenaviridae spp., Borrelia spp., Lassa mammarenavirus, Leptospira spp. and Toxoplasma gondii), we identify host-pathogen associations that have not been previously reported in host-association datasets. Finally, for these five pathogen groups, we find that the proportion of a rodent hosts range that have been sampled remains small with geographic clustering. A priority should be to sample rodent hosts across a greater geographic range to better characterise current and future risk of zoonotic spillover events. In the interim, studies of spatial pathogen risk informed by rodent distributions must incorporate a measure of the current sampling biases. The current synthesis of contextually rich rodent trapping data enriches available information from IUCN, GBIF and CLOVER which can support a more complete understanding of the hazard of zoonotic spillover events.


Subject(s)
Rodentia , Animals , Humans , Information Sources , Zoonoses/epidemiology , Mammals , Host Specificity
4.
J Infect ; 85(6): 683-692, 2022 12.
Article in English | MEDLINE | ID: mdl-36152736

ABSTRACT

BACKGROUND: Crimean-Congo haemorrhagic fever (CCHF) is a widespread tick-borne viral infection, present across Africa and Eurasia, which might pose a cryptic public health problem in Uganda. We aimed to understand the magnitude and distribution of CCHF risk in humans, livestock and ticks across Uganda by synthesising epidemiological (cross-sectional) and ecological (modelling) studies. METHODS: We conducted a cross-sectional study at three urban abattoirs receiving cattle from across Uganda. We sampled humans (n = 478), livestock (n = 419) and ticks (n = 1065) and used commercially-available kits to detect human and livestock CCHF virus (CCHFV) antibodies and antigen in tick pools. We developed boosted regression tree models to evaluate the correlates and geographical distribution of expected tick and wildlife hosts, and of human CCHF exposures, drawing on continent-wide data. FINDINGS: The cross-sectional study found CCHFV IgG/IgM seroprevalence in humans of 10·3% (7·8-13·3), with antibody detection positively associated with reported history of tick bite (age-adjusted odds ratio = 2·09 (1·09-3·98)). Cattle had a seroprevalence of 69·7% (65·1-73·4). Only one Hyalomma tick (CCHFV-negative) was found. However, CCHFV antigen was detected in Rhipicephalus (5·9% of 304 pools) and Amblyomma (2·9% of 34 pools) species. Modelling predicted high human CCHF risk across much of Uganda, low environmental suitability for Hyalomma, and high suitability for Rhipicephalus and Amblyomma. INTERPRETATION: Our epidemiological and ecological studies provide complementary evidence that CCHF exposure risk is widespread across Uganda. We challenge the idea that Hyalomma ticks are consistently the principal reservoir and vector for CCHFV, and postulate that Rhipicephalus might be important for CCHFV transmission in Uganda, due to high frequency of infected ticks and predicted environmental suitability. FUNDING: UCL Global Challenges Research Fund (GCRF) and Pan-African Network on Emerging and Re-Emerging Infections (PANDORA-ID-NET) funded by the European and Developing Countries Clinical Trials Partnership (EDCTP) under the EU Horizon 2020 Framework Programme for Research and Innovation.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Ixodidae , Rhipicephalus , Humans , Animals , Cattle , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/diagnosis , Cross-Sectional Studies , Seroepidemiologic Studies , Uganda/epidemiology
5.
Lancet Planet Health ; 6(9): e739-e748, 2022 09.
Article in English | MEDLINE | ID: mdl-36087604

ABSTRACT

BACKGROUND: Environmental degradation facilitates the emergence of vector-borne diseases, such as malaria, through changes in the ecological landscape that increase human-vector contacts and that expand vector habitats. However, the modifying effects of environmental degradation on climate-disease relationships have not been well explored. Here, we investigate the rapid re-emergence of malaria in a transmission hotspot in southern Venezuela and explore the synergistic effects of environmental degradation, specifically gold-mining activity, and climate variation. METHODS: In this spatiotemporal modelling study of the 46 parishes of the state of Bolívar, southeast Venezuela, we used data from the Venezuelan Ministry of Health including population data and monthly cases of Plasmodium falciparum malaria and Plasmodium vivax malaria between 1996 and 2016. We estimated mean precipitation and temperature using the ERA5-Land dataset and used monthly anomalies in sea-surface temperature as an indicator of El Niño events between 1996 and 2016. The location of suspected mining sites in Bolívar in 2009, 2017, and 2018 were sourced from the Amazon Geo-Referenced Socio-Environmental Information Network. We estimated measures of cumulative forest loss and urban development by km2 using annual land cover maps from the European Space Agency Climate Change Initiative between 1996 and 2016. We modelled monthly cases of P falciparum and P vivax malaria using a Bayesian hierarchical mixed model framework. We quantified the variation explained by mining activity before exploring the modifying effects of environmental degradation on climate-malaria relationships. FINDINGS: We observed a 27% reduction in the additional unexplained spatial variation in incidence of P falciparum malaria and a 23% reduction in P vivax malaria when mining was included in our models. The effect of temperature on malaria was greater in high mining areas than low mining areas, and the P falciparum malaria effect size at temperatures of 26·5°C (2·4 cases per 1000 people [95% CI 1·78-3·06]) was twice as high as the effect in low mining areas (1 case per 1000 people [0·68-1·49]). INTERPRETATION: We show that mining activity in southern Venezuela is associated with hotspots of malaria transmission. Increased temperatures exacerbated malaria transmission in mining areas, highlighting the need to consider how environmental degradation modulates climate effect on disease risk, which is especially important in areas subjected to rapidly rising temperatures and land-use change globally. Our findings have implications for the progress towards malaria elimination in the Latin American region. Our findings are also important for effectively targeting timely treatment programmes and vector-control activities in mining areas with high rates of malaria transmission. FUNDING: Biotechnology and Biological Sciences Research Council, Royal Society, US National Institutes of Health, and Global Challenges Research Fund. TRANSLATION: For the Spanish translation of the abstract see Supplementary Materials section.


Subject(s)
Malaria, Falciparum , Malaria, Vivax , Malaria , Bayes Theorem , Humans , Malaria/epidemiology , Malaria, Falciparum/epidemiology , Malaria, Vivax/epidemiology , Spatio-Temporal Analysis , United States , Venezuela/epidemiology
6.
PLoS Negl Trop Dis ; 16(2): e0010218, 2022 02.
Article in English | MEDLINE | ID: mdl-35192626

ABSTRACT

Predicting vector abundance and seasonality, key components of mosquito-borne disease (MBD) hazard, is essential to determine hotspots of MBD risk and target interventions effectively. Japanese encephalitis (JE), an important MBD, is a leading cause of viral encephalopathy in Asia with 100,000 cases estimated annually, but data on the principal vector Culex tritaeniorhynchus is lacking. We developed a Bayesian joint-likelihood model that combined information from available vector occurrence and abundance data to predict seasonal vector abundance for C. tritaeniorhynchus (a constituent of JE hazard) across India, as well as examining the environmental drivers of these patterns. Using data collated from 57 locations from 24 studies, we find distinct seasonal and spatial patterns of JE vector abundance influenced by climatic and land use factors. Lagged precipitation, temperature and land use intensity metrics for rice crop cultivation were the main drivers of vector abundance, independent of seasonal, or spatial variation. The inclusion of environmental factors and a seasonal term improved model prediction accuracy (mean absolute error [MAE] for random cross validation = 0.48) compared to a baseline model representative of static hazard predictions (MAE = 0.95), signalling the importance of seasonal environmental conditions in predicting JE vector abundance. Vector abundance varied widely across India with high abundance predicted in northern, north-eastern, eastern, and southern regions, although this ranged from seasonal (e.g., Uttar Pradesh, West Bengal) to perennial (e.g., Assam, Tamil Nadu). One-month lagged predicted vector abundance was a significant predictor of JE outbreaks (odds ratio 2.45, 95% confidence interval: 1.52-4.08), highlighting the possible development of vector abundance as a proxy for JE hazard. We demonstrate a novel approach that leverages information from sparse vector surveillance data to predict seasonal vector abundance-a key component of JE hazard-over large spatial scales, providing decision-makers with better guidance for targeting vector surveillance and control efforts.


Subject(s)
Culex , Encephalitis Virus, Japanese , Encephalitis, Japanese , Animals , Bayes Theorem , Encephalitis, Japanese/epidemiology , India/epidemiology , Mosquito Vectors , Seasons
7.
Nat Commun ; 12(1): 5759, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34599162

ABSTRACT

Lassa fever is a longstanding public health concern in West Africa. Recent molecular studies have confirmed the fundamental role of the rodent host (Mastomys natalensis) in driving human infections, but control and prevention efforts remain hampered by a limited baseline understanding of the disease's true incidence, geographical distribution and underlying drivers. Here, we show that Lassa fever occurrence and incidence is influenced by climate, poverty, agriculture and urbanisation factors. However, heterogeneous reporting processes and diagnostic laboratory access also appear to be important drivers of the patchy distribution of observed disease incidence. Using spatiotemporal predictive models we show that including climatic variability added retrospective predictive value over a baseline model (11% decrease in out-of-sample predictive error). However, predictions for 2020 show that a climate-driven model performs similarly overall to the baseline model. Overall, with ongoing improvements in surveillance there may be potential for forecasting Lassa fever incidence to inform health planning.


Subject(s)
Disease Reservoirs/virology , Epidemiological Monitoring , Lassa Fever/epidemiology , Lassa virus/pathogenicity , Murinae/virology , Animals , Climate , Geography , Humans , Incidence , Lassa Fever/transmission , Lassa Fever/virology , Nigeria/epidemiology , Poverty , Retrospective Studies , Spatio-Temporal Analysis , Urbanization
8.
Environ Sci Pollut Res Int ; 28(40): 55952-55966, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34495471

ABSTRACT

This paper explores the main factors for mosquito-borne transmission of the Zika virus by focusing on environmental, anthropogenic, and social risks. A literature review was conducted bringing together related information from this genre of research from peer-reviewed publications. It was observed that environmental conditions, especially precipitation, humidity, and temperature, played a role in the transmission. Furthermore, anthropogenic factors including sanitation, urbanization, and environmental pollution promote the transmission by affecting the mosquito density. In addition, socioeconomic factors such as poverty as well as social inequality and low-quality housing have also an impact since these are social factors that limit access to certain facilities or infrastructure which, in turn, promote transmission when absent (e.g., piped water and screened windows). Finally, the paper presents short-, mid-, and long-term preventative solutions together with future perspectives. This is the first review exploring the effects of anthropogenic aspects on Zika transmission with a special emphasis in Brazil.


Subject(s)
Aedes , Culicidae , Zika Virus Infection , Zika Virus , Animals , Brazil/epidemiology , Mosquito Vectors , Zika Virus Infection/epidemiology
9.
Conserv Biol ; 35(2): 472-482, 2021 04.
Article in English | MEDLINE | ID: mdl-33749018

ABSTRACT

Although threats to global biodiversity are well known, slowing current rates of biodiversity loss remains a challenge. The Aichi targets set out 20 goals on which the international community should act to alleviate biodiversity decline, 1 of which (Target 1) aims to raise public awareness of the importance of biodiversity. Although conventional indicators for Target 1 are of low spatial and temporal coverage, conservation culturomics metrics show how biodiversity awareness can be quantified at the global scale. Following methods used for the Living Planet Index, we devised a species awareness index (SAI) to measure change in species awareness based on Wikipedia views. We calculated this index at the page level for 41,197 species listed by the International Union for Conservation of Nature (IUCN) across 10 Wikipedia languages and >2 billion views from 1 July 2015 to 30 March 2020. Bootstrapped indices for the page-level SAI showed that overall awareness of biodiversity increased marginally over time, although there were differences among taxonomic classes and languages. Among taxonomic classes, overall awareness increased fastest for reptiles and slowest for amphibians. Among languages, overall species awareness increased fastest for Japanese and slowest for Chinese and German users. Although awareness of species as a whole increased and was significantly higher for traded species, from January 2016 through January 2020, change in awareness appeared not to be strongly related to whether the species is traded or is a pollinator. As a data source for public biodiversity awareness, the SAI could be integrated into the Conservation International Biodiversity Engagement Indicator.


El Índice de Sensibilización de Especie como Medida de Culturomia de la Conservación para la Sensibilización Pública por la Biodiversidad Resumen Aunque las amenazas a la biodiversidad mundial son bien conocidas, reducir las tasas actuales de pérdida de la biodiversidad todavía es un desafío. Los objetivos de Aichi establecieron 20 metas para las cuales debe actuar la comunidad internacional para aliviar la declinación de la biodiversidad. Una de estas metas (Objetivo 1) busca sensibilizar al público sobre la importancia de la biodiversidad. Aunque los indicadores convencionales del Objetivo 1 tienen una baja cobertura espacial y temporal, las medidas de culturomia para la conservación muestran cómo la sensibilización por la biodiversidad puede cuantificarse a escala global. Seguimos los métodos utilizados para el Índice del Planeta Viviente para diseñar un índice de sensibilización de especie (ISE) para medir el cambio en la sensibilización por una especie con base en las vistas en Wikipedia. Calculamos este índice a nivel de página para 41,197 especies incluidas en las listas de la Unión Internacional para la Conservación de la Naturaleza (UICN) en diez diferentes idiomas en Wikipedia y más de 2 mil millones de vistas entre el 1 de julio de 2015 y el 30 de marzo de 2020. Los índices de arranque para el ISE a nivel de página mostraron que la sensibilización general por la biodiversidad incrementó ligeramente con el tiempo, aunque hubo diferencia entre las clasificaciones taxonómicas y los idiomas. Entre las clasificaciones taxonómicas, la sensibilización general incrementó más rápido para los reptiles y más lento para los anfibios. Entre los idiomas, la sensibilización general por especie incrementó más rápido para los usuarios del japonés y más lento para los usuarios del chino y el alemán. Aunque la sensibilización por las especies en su totalidad incrementó y fue significativamente más alta para las especies comercializadas, entre enero de 2016 y enero de 2020 el cambio en la sensibilización pareció no estar relacionado fuertemente con si la especie es un polinizador o es comercializada. Como fuente de información para la sensibilización pública por la biodiversidad, el ISE podría ser integrado dentro del Indicador de Participación Internacional para la Conservación de la Biodiversidad.


Subject(s)
Biodiversity , Conservation of Natural Resources
10.
Glob Chang Biol ; 27(7): 1319-1321, 2021 04.
Article in English | MEDLINE | ID: mdl-33508882

ABSTRACT

Spillover of novel pathogens from wildlife to people, such as the virus responsible for the COVID-19 pandemic, is increasing and this trend is most strongly associated with tropical deforestation driven by agricultural expansion. This same process is eroding natural capital, reducing forest-associated health co-benefits, and accelerating climate change. Protecting and promoting tropical forests is one of the most immediate steps we can take to simultaneously mitigate climate change while reducing the risk of future pandemics; however, success in this undertaking will require greater connectivity of policy initiatives from local to global, as well as unification of health and environmental policy.


Subject(s)
COVID-19 , Environmental Policy , Conservation of Natural Resources , Forests , Humans , Pandemics , SARS-CoV-2 , Tropical Climate
11.
PLoS One ; 16(1): e0241190, 2021.
Article in English | MEDLINE | ID: mdl-33406134

ABSTRACT

Multiple national and international trends and drivers are radically changing what biological security means for the United Kingdom (UK). New technologies present novel opportunities and challenges, and globalisation has created new pathways and increased the speed, volume and routes by which organisms can spread. The UK Biological Security Strategy (2018) acknowledges the importance of research on biological security in the UK. Given the breadth of potential research, a targeted agenda identifying the questions most critical to effective and coordinated progress in different disciplines of biological security is required. We used expert elicitation to generate 80 policy-relevant research questions considered by participants to have the greatest impact on UK biological security. Drawing on a collaboratively-developed set of 450 questions, proposed by 41 experts from academia, industry and the UK government (consulting 168 additional experts) we subdivided the final 80 questions into six categories: bioengineering; communication and behaviour; disease threats (including pandemics); governance and policy; invasive alien species; and securing biological materials and securing against misuse. Initially, the questions were ranked through a voting process and then reduced and refined to 80 during a one-day workshop with 35 participants from a variety of disciplines. Consistently emerging themes included: the nature of current and potential biological security threats, the efficacy of existing management actions, and the most appropriate future options. The resulting questions offer a research agenda for biological security in the UK that can assist the targeting of research resources and inform the implementation of the UK Biological Security Strategy. These questions include research that could aid with the mitigation of Covid-19, and preparation for the next pandemic. We hope that our structured and rigorous approach to creating a biological security research agenda will be replicated in other countries and regions. The world, not just the UK, is in need of a thoughtful approach to directing biological security research to tackle the emerging issues.


Subject(s)
Pandemics/prevention & control , Security Measures/trends , Bioterrorism/prevention & control , COVID-19/prevention & control , Clinical Governance/trends , Communication , Disease Transmission, Infectious/prevention & control , Disease Transmission, Infectious/statistics & numerical data , Humans , Pandemics/statistics & numerical data , Policy , SARS-CoV-2/pathogenicity , Security Measures/statistics & numerical data , Surveys and Questionnaires , United Kingdom/epidemiology
12.
Trends Ecol Evol ; 36(3): 216-226, 2021 03.
Article in English | MEDLINE | ID: mdl-33293193

ABSTRACT

Given the failure of the world's governments to improve the status of biodiversity by 2020, a new strategic plan for 2030 is being developed. In order to be successful, a step-change is needed to not just simply halt biodiversity loss, but to bend the curve of biodiversity loss to stable or increasing species' populations. Here, we propose a framework that quantifies species' responses across gradients of threat intensity to implement more efficient and better targeted conservation actions. Our framework acknowledges the variation in threat intensities as well as the differences among species in their capacity to respond, and is implemented at a relevant scale for national and international policy-making.


Subject(s)
Biodiversity , Conservation of Natural Resources
14.
Nature ; 584(7821): 398-402, 2020 08.
Article in English | MEDLINE | ID: mdl-32759999

ABSTRACT

Land use change-for example, the conversion of natural habitats to agricultural or urban ecosystems-is widely recognized to influence the risk and emergence of zoonotic disease in humans1,2. However, whether such changes in risk are underpinned by predictable ecological changes remains unclear. It has been suggested that habitat disturbance might cause predictable changes in the local diversity and taxonomic composition of potential reservoir hosts, owing to systematic, trait-mediated differences in species resilience to human pressures3,4. Here we analyse 6,801 ecological assemblages and 376 host species worldwide, controlling for research effort, and show that land use has global and systematic effects on local zoonotic host communities. Known wildlife hosts of human-shared pathogens and parasites overall comprise a greater proportion of local species richness (18-72% higher) and total abundance (21-144% higher) in sites under substantial human use (secondary, agricultural and urban ecosystems) compared with nearby undisturbed habitats. The magnitude of this effect varies taxonomically and is strongest for rodent, bat and passerine bird zoonotic host species, which may be one factor that underpins the global importance of these taxa as zoonotic reservoirs. We further show that mammal species that harbour more pathogens overall (either human-shared or non-human-shared) are more likely to occur in human-managed ecosystems, suggesting that these trends may be mediated by ecological or life-history traits that influence both host status and tolerance to human disturbance5,6. Our results suggest that global changes in the mode and the intensity of land use are creating expanding hazardous interfaces between people, livestock and wildlife reservoirs of zoonotic disease.


Subject(s)
Biodiversity , Host Specificity , Zoonoses/microbiology , Zoonoses/parasitology , Zoonoses/virology , Animals , Birds/microbiology , Birds/parasitology , Birds/virology , Humans , Mammals/microbiology , Mammals/parasitology , Mammals/virology , Species Specificity , Zoonoses/transmission
15.
Nat Commun ; 10(1): 5258, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31729359

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

16.
Nat Commun ; 10(1): 4531, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31615986

ABSTRACT

Recent outbreaks of animal-borne emerging infectious diseases have likely been precipitated by a complex interplay of changing ecological, epidemiological and socio-economic factors. Here, we develop modelling methods that capture elements of each of these factors, to predict the risk of Ebola virus disease (EVD) across time and space. Our modelling results match previously-observed outbreak patterns with high accuracy, and suggest further outbreaks could occur across most of West and Central Africa. Trends in the underlying drivers of EVD risk suggest a 1.75 to 3.2-fold increase in the endemic rate of animal-human viral spill-overs in Africa by 2070, given current modes of healthcare intervention. Future global change scenarios with higher human population growth and lower rates of socio-economic development yield a fourfold higher likelihood of epidemics occurring as a result of spill-over events. Our modelling framework can be used to target interventions designed to reduce epidemic risk for many zoonotic diseases.


Subject(s)
Communicable Diseases, Emerging/virology , Ebolavirus/physiology , Environment , Hemorrhagic Fever, Ebola/virology , Socioeconomic Factors , Zoonoses/virology , Africa/epidemiology , Animals , Communicable Diseases, Emerging/epidemiology , Disease Outbreaks/prevention & control , Epidemics/prevention & control , Hemorrhagic Fever, Ebola/epidemiology , Humans , Risk Factors , Zoonoses/epidemiology
18.
Lancet Infect Dis ; 19(9): e302-e312, 2019 09.
Article in English | MEDLINE | ID: mdl-31227327

ABSTRACT

More than 80% of the global population is at risk of a vector-borne disease, with mosquito-borne diseases being the largest contributor to human vector-borne disease burden. Although many global processes, such as land-use and socioeconomic change, are thought to affect mosquito-borne disease dynamics, research to date has strongly focused on the role of climate change. Here, we show, through a review of contemporary modelling studies, that no consensus on how future changes in climatic conditions will impact mosquito-borne diseases exists, possibly due to interacting effects of other global change processes, which are often excluded from analyses. We conclude that research should not focus solely on the role of climate change but instead consider growing evidence for additional factors that modulate disease risk. Furthermore, future research should adopt new technologies, including developments in remote sensing and system dynamics modelling techniques, to enable a better understanding and mitigation of mosquito-borne diseases in a changing world.


Subject(s)
Climate Change , Mosquito Vectors , Vector Borne Diseases/epidemiology , Agriculture , Built Environment , Computer Simulation , Conservation of Natural Resources , Dengue/epidemiology , Global Health , Humans , Malaria/epidemiology , Socioeconomic Factors , Urbanization
19.
Ecol Evol ; 9(24): 14130-14141, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31938508

ABSTRACT

Biases in data availability have serious consequences on scientific inferences that can be derived. The potential consequences of these biases could be more detrimental in the less-studied megadiverse regions, often characterized by high biodiversity and serious risks of human threats, as conservation and management actions could be misdirected. Here, focusing on 134 bat species in Mexico, we analyze spatial and taxonomic biases and their drivers in occurrence data; and identify priority areas for further data collection which are currently under-sampled or at future environmental risk. We collated a comprehensive database of 26,192 presence-only bat records in Mexico to characterize taxonomic and spatial biases and relate them to species' characteristics (range size and foraging behavior). Next, we examined variables related to accessibility, species richness and security to explain the spatial patterns in occurrence records. Finally, we compared the spatial distributions of existing data and future threats to these species to highlight those regions that are likely to experience an increased level of threats but are currently under-surveyed. We found taxonomic biases, where species with wider geographical ranges and narrow-space foragers (species easily captured with traditional methods), had more occurrence data. There was a significant oversampling toward tropical regions, and the presence and number of records was positively associated with areas of high topographic heterogeneity, road density, urban, and protected areas, and negatively associated with areas which were predicted to have future increases in temperature and precipitation. Sampling efforts for Mexican bats appear to have focused disproportionately on easily captured species, tropical regions, areas of high species richness and security; leading to under-sampling in areas of high future threats. These biases could substantially influence the assessment of current status of, and future anthropogenic impacts on, this diverse species group in a tropical megadiverse country.

SELECTION OF CITATIONS
SEARCH DETAIL
...