Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 1282: 213-29, 2015.
Article in English | MEDLINE | ID: mdl-25720483

ABSTRACT

Over the last 2 decades, yeast two-hybrid became an invaluable technique to decipher protein-protein interaction networks. In the field of virology, it has proven instrumental to identify virus-host interactions that are involved in viral embezzlement of cellular functions and inhibition of immune mechanisms. Here, we present a yeast two-hybrid protocol that has been used in our laboratory since 2006 to search for cellular partners of more than 300 viral proteins. Our aim was to develop a robust and straightforward pipeline, which minimizes false-positive interactions with a decent coverage of target cDNA libraries, and only requires a minimum of equipment. We also discuss reasons that motivated our technical choices and compromises that had to be made. This protocol has been used to screen most non-structural proteins of murine hepatitis virus (MHV), a member of betacoronavirus genus, against a mouse brain cDNA library. Typical results were obtained and are presented in this report.


Subject(s)
Murine hepatitis virus/physiology , Nerve Tissue Proteins/metabolism , Two-Hybrid System Techniques , Viral Proteins/metabolism , Animals , Host-Pathogen Interactions , Mice , Virus Attachment
2.
J Virol ; 86(6): 3121-34, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22258240

ABSTRACT

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has been responsible for an epidemic outbreak of unprecedented magnitude in recent years. Since then, significant efforts have been made to better understand the biology of this virus, but we still have poor knowledge of CHIKV interactions with host cell components at the molecular level. Here we describe the extensive use of high-throughput yeast two-hybrid (HT-Y2H) assays to characterize interactions between CHIKV and human proteins. A total of 22 high-confidence interactions, which essentially involved the viral nonstructural protein nsP2, were identified and further validated in protein complementation assay (PCA). These results were integrated to a larger network obtained by extensive mining of the literature for reports on alphavirus-host interactions. To investigate the role of cellular proteins interacting with nsP2, gene silencing experiments were performed in cells infected by a recombinant CHIKV expressing Renilla luciferase as a reporter. Collected data showed that heterogeneous nuclear ribonucleoprotein K (hnRNP-K) and ubiquilin 4 (UBQLN4) participate in CHIKV replication in vitro. In addition, we showed that CHIKV nsP2 induces a cellular shutoff, as previously reported for other Old World alphaviruses, and determined that among binding partners identified by yeast two-hybrid methods, the tetratricopeptide repeat protein 7B (TTC7B) plays a significant role in this activity. Altogether, this report provides the first interaction map between CHIKV and human proteins and describes new host cell proteins involved in the replication cycle of this virus.


Subject(s)
Alphavirus Infections/metabolism , Alphavirus Infections/virology , Chikungunya virus/metabolism , Host-Pathogen Interactions , Protein Interaction Maps , Viral Nonstructural Proteins/metabolism , Carrier Proteins/metabolism , Cell Line , Chikungunya Fever , Chikungunya virus/genetics , Heterogeneous-Nuclear Ribonucleoprotein K/metabolism , Humans , Nuclear Proteins/metabolism , Viral Nonstructural Proteins/genetics
3.
Tuberculosis (Edinb) ; 91(1): 1-7, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20980199

ABSTRACT

TubercuList (http://tuberculist.epfl.ch/), the relational database that presents genome-derived information about H37Rv, the paradigm strain of Mycobacterium tuberculosis, has been active for ten years and now presents its twentieth release. Here, we describe some of the recent changes that have resulted from manual annotation with information from the scientific literature. Through manual curation, TubercuList strives to provide current gene-based information and is thus distinguished from other online sources of genome sequence data for M. tuberculosis. New, mostly small, genes have been discovered and the coordinates of some existing coding sequences have been changed when bioinformatics or experimental data suggest that this is required. Nucleotides that are polymorphic between different sources of H37Rv are annotated and gene essentiality data have been updated. A host of functional information has been gleaned from the literature and many new activities of proteins and RNAs have been included. To facilitate basic and translational research, TubercuList also provides links to other specialized databases that present diverse datasets such as 3D-structures, expression profiles, drug development criteria and drug resistance information, in addition to direct access to PubMed articles pertinent to particular genes. TubercuList has been and remains a highly valuable tool for the tuberculosis research community with >75,000 visitors per month.


Subject(s)
Databases, Genetic , Mycobacterium tuberculosis/genetics , Tuberculosis , Databases, Factual , Genomics , Humans , Tuberculosis/epidemiology , Tuberculosis/genetics
4.
PLoS Pathog ; 5(9): e1000587, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19806178

ABSTRACT

A number of paramyxoviruses are responsible for acute respiratory infections in children, elderly and immuno-compromised individuals, resulting in airway inflammation and exacerbation of chronic diseases like asthma. To understand the molecular pathogenesis of these infections, we searched for cellular targets of the virulence protein C of human parainfluenza virus type 3 (hPIV3-C). We found that hPIV3-C interacts directly through its C-terminal domain with STAT1 and GRB2, whereas C proteins from measles or Nipah viruses failed to do so. Binding to STAT1 explains the previously reported capacity of hPIV3-C to block type I interferon signaling, but the interaction with GRB2 was unexpected. This adaptor protein bridges Epidermal Growth Factor (EGF) receptor to MAPK/ERK pathway, a signaling cascade recently found to be involved in airway inflammatory response. We report that either hPIV3 infection or transient expression of hPIV3-C both increase cellular response to EGF, as assessed by Elk1 transactivation and phosphorylation levels of ERK1/2, 40S ribosomal subunit protein S6 and translation initiation factor 4E (eIF4E). Furthermore, inhibition of MAPK/ERK pathway with U0126 prevented viral protein expression in infected cells. Altogether, our data provide molecular basis to explain the role of hPIV3-C as a virulence factor and determinant of pathogenesis and demonstrate that Paramyxoviridae have evolved a single virulence factor to block type I interferon signaling and to boost simultaneous cellular response to growth factors.


Subject(s)
Epidermal Growth Factor/metabolism , Interferon Type I/metabolism , Parainfluenza Virus 3, Human/metabolism , Virulence Factors/metabolism , Animals , Binding Sites , Cell Count , Cell Line , Chlorocebus aethiops , Eukaryotic Initiation Factor-4E/metabolism , Flow Cytometry , GRB2 Adaptor Protein/metabolism , HeLa Cells , Humans , Immunohistochemistry , Interferon-alpha/metabolism , Interferon-beta/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Parainfluenza Virus 3, Human/pathogenicity , Phosphorylation , Protein Interaction Mapping , Reproducibility of Results , STAT1 Transcription Factor/metabolism , Signal Transduction , Vero Cells , Viral Proteins/metabolism
5.
Virology ; 368(2): 351-62, 2007 Nov 25.
Article in English | MEDLINE | ID: mdl-17686504

ABSTRACT

Viruses have evolved various strategies to escape the antiviral activity of type I interferons (IFN-alpha/beta). For measles virus, this function is carried by the polycistronic gene P that encodes, by an unusual editing strategy, for the phosphoprotein P and the virulence factor V (MV-V). MV-V prevents STAT1 nuclear translocation by either sequestration or phosphorylation inhibition, thereby blocking IFN-alpha/beta pathway. We show that both the N- and C-terminal domains of MV-V (PNT and VCT) contribute to the inhibition of IFN-alpha/beta signaling. Using the two-hybrid system and co-affinity purification experiments, we identified STAT1 and Jak1 as interactors of MV-V and demonstrate that MV-V can block the direct phosphorylation of STAT1 by Jak1. A deleterious mutation within the PNT domain of MV-V (Y110H) impaired its ability to interact and block STAT1 phosphorylation. Thus, MV-V interacts with at least two components of IFN-alpha/beta receptor complex to block downstream signaling.


Subject(s)
Janus Kinase 1/antagonists & inhibitors , Phosphoproteins/metabolism , Viral Proteins/metabolism , Cell Line , Humans , Interferon-alpha/metabolism , Interferon-beta/metabolism , Janus Kinase 1/metabolism , Phosphorylation/drug effects , STAT1 Transcription Factor/antagonists & inhibitors , STAT1 Transcription Factor/metabolism , Signal Transduction , Transfection , Two-Hybrid System Techniques
6.
Genome Res ; 17(2): 192-200, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17210928

ABSTRACT

Mycobacterium ulcerans is found in aquatic ecosystems and causes Buruli ulcer in humans, a neglected but devastating necrotic disease of subcutaneous tissue that is rampant throughout West and Central Africa. Here, we report the complete 5.8-Mb genome sequence of M. ulcerans and show that it comprises two circular replicons, a chromosome of 5632 kb and a virulence plasmid of 174 kb. The plasmid is required for production of the polyketide toxin mycolactone, which provokes necrosis. Comparisons with the recently completed 6.6-Mb genome of Mycobacterium marinum revealed >98% nucleotide sequence identity and genome-wide synteny. However, as well as the plasmid, M. ulcerans has accumulated 213 copies of the insertion sequence IS2404, 91 copies of IS2606, 771 pseudogenes, two bacteriophages, and multiple DNA deletions and rearrangements. These data indicate that M. ulcerans has recently evolved via lateral gene transfer and reductive evolution from the generalist, more rapid-growing environmental species M. marinum to become a niche-adapted specialist. Predictions based on genome inspection for the production of modified mycobacterial virulence factors, such as the highly abundant phthiodiolone lipids, were confirmed by structural analyses. Similarly, 11 protein-coding sequences identified as M. ulcerans-specific by comparative genomics were verified as such by PCR screening a diverse collection of 33 strains of M. ulcerans and M. marinum. This work offers significant insight into the biology and evolution of mycobacterial pathogens and is an important component of international efforts to counter Buruli ulcer.


Subject(s)
Evolution, Molecular , Genome, Bacterial , Mycobacterium ulcerans/genetics , Mycobacterium ulcerans/physiology , Adaptation, Physiological , Chromosomes, Bacterial/genetics , DNA Transposable Elements , Humans , Molecular Sequence Data , Mycobacteriophages/isolation & purification , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium marinum/genetics , Mycobacterium ulcerans/pathogenicity , Mycobacterium ulcerans/virology , Pseudogenes , Skin Ulcer/microbiology , Species Specificity , Virulence/genetics
7.
Nucleic Acids Res ; 30(1): 62-5, 2002 Jan 01.
Article in English | MEDLINE | ID: mdl-11752255

ABSTRACT

SubtiList is the reference database dedicated to the genome of Bacillus subtilis 168, the paradigm of Gram-positive endospore-forming bacteria. Developed in the framework of the B.subtilis genome project, SubtiList provides a curated dataset of DNA and protein sequences, combined with the relevant annotations and functional assignments. Information about gene functions and products is continuously updated by linking relevant bibliographic references. Recently, sequence corrections arising from both systematic verifications and submissions by individual scientists were included in the reference genome sequence. SubtiList is based on a generic relational data schema and a World Wide Web interface developed for the handling of bacterial genomes, called GenoList. The World Wide Web interface was designed to allow users to easily browse through genome data and retrieve information according to common biological queries. SubtiList also provides more elaborate tools, such as pattern searching, which are tightly connected to the overall browsing system. SubtiList is accessible at http://genolist.pasteur.fr/SubtiList/. Similar bacterial databases are accessible at http://genolist.pasteur.fr/.


Subject(s)
Bacillus subtilis/genetics , Databases, Genetic , Genome, Bacterial , Bacillus subtilis/physiology , Bacterial Proteins/genetics , Bacterial Proteins/physiology , Database Management Systems , Forecasting , Information Storage and Retrieval , Internet
SELECTION OF CITATIONS
SEARCH DETAIL
...