Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Hum Genet ; 21(4): 437-43, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22948022

ABSTRACT

Prostate cancer (PrCa) is the most common male cancer in developed countries and the second most common cause of cancer death after lung cancer. We recently reported a genome-wide linkage scan in 69 Finnish hereditary PrCa (HPC) families, which replicated the HPC9 locus on 17q21-q22 and identified a locus on 2q37. The aim of this study was to identify and to detect other loci linked to HPC. Here we used ordered subset analysis (OSA), conditioned on nonparametric linkage to these loci to detect other loci linked to HPC in subsets of families, but not the overall sample. We analyzed the families based on their evidence for linkage to chromosome 2, chromosome 17 and a maximum score using the strongest evidence of linkage from either of the two loci. Significant linkage to a 5-cM linkage interval with a peak OSA nonparametric allele-sharing LOD score of 4.876 on Xq26.3-q27 (ΔLOD=3.193, empirical P=0.009) was observed in a subset of 41 families weakly linked to 2q37, overlapping the HPCX1 locus. Two peaks that were novel to the analysis combining linkage evidence from both primary loci were identified; 18q12.1-q12.2 (OSA LOD=2.541, ΔLOD=1.651, P=0.03) and 22q11.1-q11.21 (OSA LOD=2.395, ΔLOD=2.36, P=0.006), which is close to HPC6. Using OSA allows us to find additional loci linked to HPC in subsets of families, and underlines the complex genetic heterogeneity of HPC even in highly aggregated families.


Subject(s)
Genetic Heterogeneity , Genetic Linkage , Prostatic Neoplasms/genetics , Chromosomes, Human, Pair 17/genetics , Chromosomes, Human, Pair 2/genetics , Female , Genetic Loci , Humans , Male , Pedigree
2.
Int J Cancer ; 129(10): 2400-7, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21207418

ABSTRACT

Genome-wide linkage studies have been used to localize rare and highly penetrant prostate cancer (PRCA) susceptibility genes. Linkage studies performed in different ethnic backgrounds and populations have been somewhat disparate, resulting in multiple, often irreproducible signals because of genetic heterogeneity and high sporadic background of the disease. Our first genome-wide linkage study and subsequent fine-mapping study of Finnish hereditary prostate cancer (HPC) families gave evidence of linkage to one region. Here, we conducted subsequent scans with microsatellites and SNPs in a total of 69 Finnish HPC families. GENEHUNTER-PLUS was used for parametric and nonparametric analyses. Our microsatellite genome-wide linkage study provided evidence of linkage to 17q12-q23, with a heterogeneity LOD (HLOD) score of 3.14 in a total of 54 of the 69 families. Genome-wide SNP analysis of 59 of the 69 families gave a highest HLOD score of 3.40 at 2q37.3 under a dominant high penetrance model. Analyzing all 69 families by combining microsatellite and SNP maps also yielded HLOD scores of > 3.3 in two regions (2q37.3 and 17q12-q21.3). These significant linkage peaks on chromosome 2 and 17 confirm previous linkage evidence of a locus on 17q from other populations and provide a basis for continued research into genetic factors involved in PRCA. Fine-mapping analysis of these regions is ongoing and candidate genes at linked loci are currently under analysis.


Subject(s)
Chromosomes, Human, Pair 17 , Chromosomes, Human, Pair 2 , Genetic Linkage , Prostatic Neoplasms/genetics , Chromosome Mapping , Finland , Genetic Predisposition to Disease , Humans , Male , Microsatellite Repeats
3.
Prostate ; 57(4): 290-7, 2003 Dec 01.
Article in English | MEDLINE | ID: mdl-14601025

ABSTRACT

BACKGROUND: Prostate cancer (CaP) is a common disorder with multiple genetic and environmental factors contributing to the disease. CaP susceptibility loci can be identified through genome-wide scans of high-risk families. METHODS: Allele sharing at 405 markers, distributed across the genome, among 50 families with hereditary prostate cancer, ascertained throughout Sweden, was evaluated through linkage analyses. Genotype data were analyzed utilizing multipoint parametric and non-parametric methods. RESULTS: Two regions provided suggestive evidence for linkage: 19p13.3 (marker D19S209, LOD = 2.91, P = 0.0001) and 5q11.2 (marker D5S407, LOD = 2.24, P = 0.0007). Additional regions with moderate evidence for linkage in the complete set of families, or stratified subsets, were observed on chromosome 1, 4, 6, 7, 8, and X. CONCLUSIONS: Our results provide strong confirmatory evidence of linkage at 19q13.3 and 5q11.2. The lack of confirmation of linkage at several loci identified in other genome-wide scans emphasizes the need to combine linkage data between research groups.


Subject(s)
Genetic Linkage/genetics , Genome, Human , Prostatic Neoplasms/genetics , Aged , Alleles , Chromosomes, Human, Pair 19/genetics , Chromosomes, Human, Pair 5/genetics , DNA, Neoplasm/chemistry , DNA, Neoplasm/genetics , Family , Female , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Polymerase Chain Reaction , Sequence Analysis, DNA , Statistics, Nonparametric , Sweden
SELECTION OF CITATIONS
SEARCH DETAIL
...