Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(18): eadl2991, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38691615

ABSTRACT

Amyloid fibrils of tau are increasingly accepted as a cause of neuronal death and brain atrophy in Alzheimer's disease (AD). Diminishing tau aggregation is a promising strategy in the search for efficacious AD therapeutics. Previously, our laboratory designed a six-residue, nonnatural amino acid inhibitor D-TLKIVW peptide (6-DP), which can prevent tau aggregation in vitro. However, it cannot block cell-to-cell transmission of tau aggregation. Here, we find D-TLKIVWC (7-DP), a d-cysteine extension of 6-DP, not only prevents tau aggregation but also fragments tau fibrils extracted from AD brains to neutralize their seeding ability and protect neuronal cells from tau-induced toxicity. To facilitate the transport of 7-DP across the blood-brain barrier, we conjugated it to magnetic nanoparticles (MNPs). The MNPs-DP complex retains the inhibition and fragmentation properties of 7-DP alone. Ten weeks of MNPs-DP treatment appear to reverse neurological deficits in the PS19 mouse model of AD. This work offers a direction for development of therapies to target tau fibrils.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Magnetite Nanoparticles , tau Proteins , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , tau Proteins/metabolism , tau Proteins/chemistry , Mice , Humans , Magnetite Nanoparticles/chemistry , Amyloid/metabolism , Amyloid/chemistry , Mice, Transgenic , Behavior, Animal/drug effects , Peptides/chemistry , Peptides/pharmacology , Protein Aggregation, Pathological/metabolism , Brain/metabolism , Brain/pathology , Brain/drug effects
2.
Front Immunol ; 11: 558036, 2020.
Article in English | MEDLINE | ID: mdl-33178186

ABSTRACT

Neuroinflammation plays a crucial role in the development and progression of Alzheimer's disease (AD), in which activated microglia are found to be associated with neurodegeneration. However, there is limited evidence showing how neuroinflammation and activated microglia are directly linked to neurodegeneration in vivo. Besides, there are currently no effective anti-inflammatory drugs for AD. In this study, we report on an effective anti-inflammatory lipid, linoleic acid (LA) metabolite docosapentaenoic acid (DPAn-6) treatment of aged humanized EFAD mice with advanced AD pathology. We also report the associations of neuroinflammatory and/or activated microglial markers with neurodegeneration in vivo. First, we found that dietary LA reduced proinflammatory cytokines of IL1-ß, IL-6, as well as mRNA expression of COX2 toward resolving neuroinflammation with an increase of IL-10 in adult AD models E3FAD and E4FAD mice. Brain fatty acid assays showed a five to six-fold increase in DPAn-6 by dietary LA, especially more in E4FAD mice, when compared to standard diet. Thus, we tested DPAn-6 in aged E4FAD mice. After DPAn-6 was administered to the E4FAD mice by oral gavage for three weeks, we found that DPAn-6 reduced microgliosis and mRNA expressions of inflammatory, microglial, and caspase markers. Further, DPAn-6 increased mRNA expressions of ADCYAP1, VGF, and neuronal pentraxin 2 in parallel, all of which were inversely correlated with inflammatory and microglial markers. Finally, both LA and DPAn-6 directly reduced mRNA expression of COX2 in amyloid-beta42 oligomer-challenged BV2 microglial cells. Together, these data indicated that DPAn-6 modulated neuroinflammatory responses toward resolution and improvement of neurodegeneration in the late stages of AD models.


Subject(s)
Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Brain/immunology , Brain/metabolism , Fatty Acids, Omega-6/metabolism , Fatty Acids, Unsaturated/metabolism , Immunity, Innate , Alzheimer Disease/pathology , Animals , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Cytokines/metabolism , Disease Models, Animal , Disease Susceptibility , Immunohistochemistry , Inflammation Mediators/metabolism , Mice , Mice, Transgenic , Microglia/immunology , Microglia/metabolism , Neurodegenerative Diseases
3.
Front Physiol ; 10: 1269, 2019.
Article in English | MEDLINE | ID: mdl-31708792

ABSTRACT

Alzheimer's disease (AD) and mixed dementia (MxD) comprise the majority of dementia cases in the growing global aging population. MxD describes the coexistence of AD pathology with vascular pathology, including cerebral small vessel disease (SVD). Cardiovascular disease increases risk for AD and MxD, but mechanistic synergisms between the coexisting pathologies affecting dementia risk, progression and the ultimate clinical manifestations remain elusive. To explore the additive or synergistic interactions between AD and chronic hypertension, we developed a rat model of MxD, produced by breeding APPswe/PS1ΔE9 transgenes into the stroke-prone spontaneously hypertensive rat (SHRSP) background, resulting in the SHRSP/FAD model and three control groups (FAD, SHRSP and non-hypertensive WKY rats, n = 8-11, both sexes, 16-18 months of age). After behavioral testing, rats were euthanized, and tissue assessed for vascular, neuroinflammatory and AD pathology. Hypertension was preserved in the SHRSP/FAD cross. Results showed that SHRSP increased FAD-dependent neuroinflammation (microglia and astrocytes) and tau pathology, but plaque pathology changes were subtle, including fewer plaques with compact cores and slightly reduced plaque burden. Evidence for vascular pathology included a change in the distribution of astrocytic end-foot protein aquaporin-4, normally distributed in microvessels, but in SHRSP/FAD rats largely dissociated from vessels, appearing disorganized or redistributed into neuropil. Other evidence of SVD-like pathology included increased collagen IV staining in cerebral vessels and PECAM1 levels. We identified a plasma biomarker in SHRSP/FAD rats that was the only group to show increased Aqp-4 in plasma exosomes. Evidence of neuron damage in SHRSP/FAD rats included increased caspase-cleaved actin, loss of myelin and reduced calbindin staining in neurons. Further, there were mitochondrial deficits specific to SHRSP/FAD, notably the loss of complex II, accompanying FAD-dependent loss of mitochondrial complex I. Cognitive deficits exhibited by FAD rats were not exacerbated by the introduction of the SHRSP phenotype, nor was the hyperactivity phenotype associated with SHRSP altered by the FAD transgene. This novel rat model of MxD, encompassing an amyloidogenic transgene with a hypertensive phenotype, exhibits several features associated with human vascular or "mixed" dementia and may be a useful tool in delineating the pathophysiology of MxD and development of therapeutics.

4.
Neurobiol Dis ; 114: 120-128, 2018 06.
Article in English | MEDLINE | ID: mdl-29501530

ABSTRACT

Synaptic neurodegeneration is thought to be an early event initiated by soluble ß-amyloid (Aß) aggregates that closely correlates with cognitive decline in Alzheimer disease (AD). Apolipoprotein ε4 (APOE4) is the most common genetic risk factor for both familial AD (FAD) and sporadic AD; it accelerates Aß aggregation and selectively impairs glutamate receptor function and synaptic plasticity. However, its molecular mechanisms remain elusive and these synaptic deficits are difficult to monitor. AD- and APOE4-dependent plasma biomarkers have been proposed, but synapse-related plasma biomarkers are lacking. We evaluated neuronal pentraxin 1 (NP1), a potential CNS-derived plasma biomarker of excitatory synaptic pathology. NP1 is preferentially expressed in brain and involved in glutamate receptor internalization. NP1 is secreted presynaptically induced by Aß oligomers, and implicated in excitatory synaptic and mitochondrial deficits. Levels of NP1 and its fragments were increased in a correlated fashion in both brain and plasma of 7-8 month-old E4FAD mice relative to E3FAD mice. NP1 was also found in exosome preparations and reduced by dietary DHA supplementation. Plasma NP1 was higher in E4FAD+ (APOE4+/+/FAD+/-) relative to E4FAD- (non-carrier; APOE4+/+/FAD-/-) mice, suggesting NP1 is modulated by Aß expression. Finally, relative to normal elderly, plasma NP1 was also elevated in patients with mild cognitive impairment (MCI) and elevated further in the subset who progressed to early-stage AD. In those patients, there was a trend towards increased NP1 levels in APOE4 carriers relative to non-carriers. These findings indicate that NP1 may represent a potential synapse-derived plasma biomarker relevant to early alterations in excitatory synapses in MCI and early-stage AD.


Subject(s)
Alzheimer Disease/blood , Brain/metabolism , Nerve Tissue Proteins/blood , Synapses/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Animals , Biomarkers/blood , Brain/pathology , C-Reactive Protein , Female , Humans , Male , Mice , Mice, Knockout , Synapses/pathology
5.
Expert Rev Neurother ; 15(6): 629-37, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26035622

ABSTRACT

Curcumin, a polyphenolic antioxidant derived from the turmeric root has undergone extensive preclinical development, showing remarkable efficacy in wound repair, cancer and inflammatory disorders. This review addresses the rationale for its use in neurodegenerative disease, particularly Alzheimer's disease. Curcumin is a pleiotropic molecule, which not only directly binds to and limits aggregation of the ß-sheet conformations of amyloid characteristic of many neurodegenerative diseases but also restores homeostasis of the inflammatory system, boosts the heat shock system to enhance clearance of toxic aggregates, scavenges free radicals, chelates iron and induces anti-oxidant response elements. Although curcumin corrects dysregulation of multiple pathways, it may exert many effects via a few molecular targets. Pharmaceutical development of natural compounds like curcumin and synthetic derivatives have strong scientific rationale, but will require overcoming various hurdles including; high cost of trials, concern about profitability and misconceptions about drug specificity, stability, and bioavailability.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Curcumin/therapeutic use , Neurodegenerative Diseases/drug therapy , Amyloid beta-Peptides/metabolism , Brain/drug effects , Brain/metabolism , Humans , Models, Biological , Neurodegenerative Diseases/pathology , Retina/drug effects , Retina/metabolism , tau Proteins/metabolism
6.
Brain ; 135(Pt 12): 3735-48, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23183235

ABSTRACT

Alzheimer's disease is a devastating cureless neurodegenerative disorder affecting >35 million people worldwide. The disease is caused by toxic oligomers and aggregates of amyloid ß protein and the microtubule-associated protein tau. Recently, the Lys-specific molecular tweezer CLR01 has been shown to inhibit aggregation and toxicity of multiple amyloidogenic proteins, including amyloid ß protein and tau, by disrupting key interactions involved in the assembly process. Following up on these encouraging findings, here, we asked whether CLR01 could protect primary neurons from Alzheimer's disease-associated synaptotoxicity and reduce Alzheimer's disease-like pathology in vivo. Using cell culture and brain slices, we found that CLR01 effectively inhibited synaptotoxicity induced by the 42-residue isoform of amyloid ß protein, including ∼80% inhibition of changes in dendritic spines density and long-term potentiation and complete inhibition of changes in basal synaptic activity. Using a radiolabelled version of the compound, we found that CLR01 crossed the mouse blood-brain barrier at ∼2% of blood levels. Treatment of 15-month-old triple-transgenic mice for 1 month with CLR01 resulted in a decrease in brain amyloid ß protein aggregates, hyperphosphorylated tau and microglia load as observed by immunohistochemistry. Importantly, no signs of toxicity were observed in the treated mice, and CLR01 treatment did not affect the amyloidogenic processing of amyloid ß protein precursor. Examining induction or inhibition of the cytochrome P450 metabolism system by CLR01 revealed minimal interaction. Together, these data suggest that CLR01 is safe for use at concentrations well above those showing efficacy in mice. The efficacy and toxicity results support a process-specific mechanism of action of molecular tweezers and suggest that these are promising compounds for developing disease-modifying therapy for Alzheimer's disease and related disorders.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/chemistry , Brain/pathology , Lysine/chemistry , Neurons/physiology , tau Proteins/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/prevention & control , Amyloid beta-Peptides/pharmacology , Amyloid beta-Protein Precursor/genetics , Animals , Antiparasitic Agents/chemistry , Antiparasitic Agents/therapeutic use , Blood-Testis Barrier/drug effects , Blood-Testis Barrier/physiology , Cells, Cultured , Cytochrome P-450 Enzyme System/metabolism , Dendritic Spines/metabolism , Dendritic Spines/pathology , Disease Models, Animal , Electric Stimulation , Exploratory Behavior/drug effects , Long-Term Potentiation/drug effects , Long-Term Potentiation/genetics , Lysine/pharmacology , Mice , Mice, Transgenic , Microtubule-Associated Proteins/metabolism , Neurons/drug effects , Neurons/pathology , Protein Isoforms/metabolism , Synaptic Transmission/drug effects , Synaptic Transmission/genetics , tau Proteins/genetics
7.
Neurobiol Dis ; 43(3): 565-75, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21605674

ABSTRACT

In vivo detection of Alzheimer's disease (AD) neuropathology in living patients using positron emission tomography (PET) in conjunction with high affinity molecular imaging probes for ß-amyloid (Aß) and tau has the potential to assist with early diagnosis, evaluation of disease progression, and assessment of therapeutic interventions. Animal models of AD are valuable for exploring the in vivo binding of these probes, particularly their selectivity for specific neuropathologies, but prior PET experiments in transgenic mice have yielded conflicting results. In this work, we utilized microPET imaging in a transgenic rat model of brain Aß deposition to assess [F-18]FDDNP binding profiles in relation to age-associated accumulation of neuropathology. Cross-sectional and longitudinal imaging demonstrated that [F-18]FDDNP binding in the hippocampus and frontal cortex progressively increases from 9 to 18months of age and parallels age-associated Aß accumulation. Specificity of in vivo [F-18]FDDNP binding was assessed by naproxen pretreatment, which reversibly blocked [F-18]FDDNP binding to Aß aggregrates. Both [F-18]FDDNP microPET imaging and neuropathological analyses revealed decreased Aß burden after intracranial anti-Aß antibody administration. The combination of this non-invasive imaging method and robust animal model of brain Aß accumulation allows for future longitudinal in vivo assessments of potential therapeutics for AD that target Aß production, aggregation, and/or clearance. These results corroborate previous analyses of [F-18]FDDNP PET imaging in clinical populations.


Subject(s)
Aging/pathology , Alzheimer Disease/diagnostic imaging , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/immunology , Antibodies, Blocking/pharmacology , Nitriles , Positron-Emission Tomography/methods , Aging/immunology , Alzheimer Disease/genetics , Alzheimer Disease/immunology , Amyloid beta-Protein Precursor/metabolism , Amyloidosis/diagnostic imaging , Amyloidosis/genetics , Amyloidosis/immunology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Binding, Competitive/immunology , Disease Models, Animal , Fluorine Radioisotopes , Humans , Naproxen/pharmacology , Rats , Rats, Sprague-Dawley , Rats, Transgenic
8.
Neurobiol Dis ; 33(2): 193-206, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19038340

ABSTRACT

The dysregulation of glycogen synthase kinase-3 (GSK3) has been implicated in Alzheimer disease (AD) pathogenesis and in Abeta-induced neurotoxicity, leading us to investigate it as a therapeutic target in an intracerebroventricular Abeta infusion model. Infusion of a specific GSK3 inhibitor SB216763 (SB) reduced a downstream target, phospho-glycogen synthase 39%, and increased glycogen levels 44%, suggesting effective inhibition of enzyme activity. Compared to vehicle, Abeta increased GSK3 activity, and was associated with elevations in levels of ptau, caspase-3, the tau kinase phospho-c-jun N-terminal kinase (pJNK), neuronal DNA fragmentation, and gliosis. Co-infusion of SB corrected all responses to Abeta infusion except the induction of gliosis and behavioral deficits in the Morris water maze. Nevertheless, SB alone was associated with induction of neurodegenerative markers and behavioral deficits. These data support a role for GSK3 hyperactivation in AD pathogenesis, but emphasize the importance of developing inhibitors that do not suppress constitutive activity.


Subject(s)
Alzheimer Disease/therapy , Enzyme Inhibitors/therapeutic use , Glycogen Synthase Kinase 3/antagonists & inhibitors , Indoles/therapeutic use , Maleimides/therapeutic use , Alzheimer Disease/chemically induced , Amyloid beta-Peptides/pharmacology , Animals , Caspase 3/metabolism , Cells, Cultured , DNA Fragmentation , Disease Models, Animal , Enzyme Inhibitors/adverse effects , Gliosis/chemically induced , Glycogen/metabolism , Glycogen Synthase Kinase 3/metabolism , Hippocampus/drug effects , Hippocampus/physiology , Indoles/adverse effects , JNK Mitogen-Activated Protein Kinases/metabolism , Maleimides/adverse effects , Maze Learning , Nerve Degeneration/drug therapy , Neurons/drug effects , Neurons/metabolism , Phosphorylation , Rats , Rats, Sprague-Dawley , tau Proteins/metabolism
9.
J Alzheimers Dis ; 15(4): 625-40, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19096161

ABSTRACT

The rat amyloid-beta (Abeta) intracerebroventricular infusion can model aspects of Alzheimer's disease (AD) and has predicted efficacy of therapies such as ibuprofen and curcumin in transgenic mouse models. High density lipoprotein (HDL), a normal plasma carrier of Abeta, is used to attenuate Abeta aggregation within the pump, causing Abeta-dependent toxicity and cognitive deficits within 3 months. Our goal was to identify factors that might accelerate onset of Abeta-dependent deficits to improve efficiency and cost-effectiveness of model. We focused on: 1) optimizing HDL-Abeta preparation for maximal toxicity; 2) evaluating the role of copper, a factor typically in water that can impact oligomer stability; and 3) determining impact of insulin resistance (type II diabetes), a risk factor for AD. In vitro studies were performed to determine doses of copper and methods of Abeta-HDL preparation that maximized toxicity. These preparations when infused resulted in earlier onset of cognitive deficits within 6 weeks post-infusion. Induction of insulin resistance did not exacerbate Abeta-dependent cognitive deficits, but did exacerbate synaptic protein loss. In summary, the newly described in vivo infusion model may be useful cost-effective method for screening for new therapeutic drugs for AD.


Subject(s)
Alzheimer Disease/genetics , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Cognition Disorders/genetics , Cognition Disorders/psychology , Copper/toxicity , Insulin Resistance/genetics , Nerve Tissue Proteins/metabolism , Synapses/metabolism , Alzheimer Disease/pathology , Animals , Blotting, Western , Cells, Cultured , Cognition Disorders/pathology , Diet , Fructose/pharmacology , Insulin Resistance/physiology , Maze Learning/physiology , Osmosis , Rats , Rats, Sprague-Dawley
10.
J Pharmacol Exp Ther ; 326(1): 196-208, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18417733

ABSTRACT

Curcumin can reduce inflammation and neurodegeneration, but its chemical instability and metabolism raise concerns, including whether the more stable metabolite tetrahydrocurcumin (TC) may mediate efficacy. We examined the antioxidant, anti-inflammatory, or anti-amyloidogenic effects of dietary curcumin and TC, either administered chronically to aged Tg2576 APPsw mice or acutely to lipopolysaccharide (LPS)-injected wild-type mice. Despite dramatically higher drug plasma levels after TC compared with curcumin gavage, resulting brain levels of parent compounds were similar, correlating with reduction in LPS-stimulated inducible nitric-oxide synthase, nitrotyrosine, F2 isoprostanes, and carbonyls. In both the acute (LPS) and chronic inflammation (Tg2576), TC and curcumin similarly reduced interleukin-1beta. Despite these similarities, only curcumin was effective in reducing amyloid plaque burden, insoluble beta-amyloid peptide (Abeta), and carbonyls. TC had no impact on plaques or insoluble Abeta, but both reduced Tris-buffered saline-soluble Abeta and phospho-c-Jun NH(2)-terminal kinase (JNK). Curcumin but not TC prevented Abeta aggregation. The TC metabolite was detected in brain and plasma from mice chronically fed the parent compound. These data indicate that the dienone bridge present in curcumin, but not in TC, is necessary to reduce plaque deposition and protein oxidation in an Alzheimer's model. Nevertheless, TC did reduce neuroinflammation and soluble Abeta, effects that may be attributable to limiting JNK-mediated transcription. Because of its favorable safety profile and the involvement of misfolded proteins, oxidative damage, and inflammation in multiple chronic degenerative diseases, these data relating curcumin dosing to the blood and tissue levels required for efficacy should help translation efforts from multiple successful preclinical models.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Curcumin/metabolism , Curcumin/therapeutic use , Disease Models, Animal , Alzheimer Disease/pathology , Animals , Biological Availability , Curcumin/chemistry , Female , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...