Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(24): 246601, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37390408

ABSTRACT

The bulk-boundary correspondence relates topologically protected edge modes to bulk topological invariants and is well understood for short-range free-fermion chains. Although case studies have considered long-range Hamiltonians whose couplings decay with a power-law exponent α, there has been no systematic study for a free-fermion symmetry class. We introduce a technique for solving gapped, translationally invariant models in the 1D BDI and AIII symmetry classes with α>1, linking together the quantized winding invariant, bulk topological string-order parameters, and a complete solution of the edge modes. The physics of these chains is elucidated by studying a complex function determined by the couplings of the Hamiltonian: in contrast to the short-range case where edge modes are associated to roots of this function, we find that they are now associated to singularities. A remarkable consequence is that the finite-size splitting of the edge modes depends on the topological winding number, which can be used as a probe of the latter. We furthermore generalize these results by (i) identifying a family of BDI chains with α<1 where our results still hold and (ii) showing that gapless symmetry-protected topological chains can have topological invariants and edge modes when α-1 exceeds the dynamical critical exponent.

2.
Phys Rev Lett ; 120(5): 057001, 2018 Feb 02.
Article in English | MEDLINE | ID: mdl-29481177

ABSTRACT

We show that topology can protect exponentially localized, zero energy edge modes at critical points between one-dimensional symmetry-protected topological phases. This is possible even without gapped degrees of freedom in the bulk-in contrast to recent work on edge modes in gapless chains. We present an intuitive picture for the existence of these edge modes in the case of noninteracting spinless fermions with time-reversal symmetry (BDI class of the tenfold way). The stability of this phenomenon relies on a topological invariant defined in terms of a complex function, counting its zeros and poles inside the unit circle. This invariant can prevent two models described by the same conformal field theory (CFT) from being smoothly connected. A full classification of critical phases in the noninteracting BDI class is obtained: Each phase is labeled by the central charge of the CFT, c∈1/2N, and the topological invariant, ω∈Z. Moreover, c is determined by the difference in the number of edge modes between the phases neighboring the transition. Numerical simulations show that the topological edge modes of critical chains can be stable in the presence of interactions and disorder.

SELECTION OF CITATIONS
SEARCH DETAIL
...