Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Cell Biosci ; 13(1): 135, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37488646

ABSTRACT

BACKGROUND: Genetics evidences have long linked mosaic loss of Y-chromosome (mLOY) in peripheral leukocytes with a wide range of male age-associated diseases. However, a lack of cellular and molecular mechanistic explanations for this link has limited further investigation into the relationship between mLOY and male age-related disease. Excitingly, Sano et al. have provided the first piece of evidence directly linking mLOY to cardiac fibrosis through mLOY enriched profibrotic transforming growth factor ß1 (TGF-ß1) regulons in hematopoietic macrophages along with suppressed interleukin-1ß (IL-1ß) proinflammatory regulons. The results of this novel finding can be extrapolated to other disease related to mLOY, such as cancer, cardiac disease, and age-related macular degeneration. RESULTS: Sano et al. used a CRISPR-Cas9 gRNAs gene editing induced Y-chromosome ablation mouse model to assess results of a UK biobank prospective analysis implicating the Y-chromosome in male age-related disease. Using this in vivo model, Sano et al. showed that hematopoietic mLOY accelerated cardiac fibrosis and heart failure in male mice through profibrotic pathways. This process was linked to monocyte-macrophage differentiation during hematopoietic development. Mice confirmed to have mLOY in leukocytes, by loss of Y-chromosome genes Kdm5d, Uty, Eif2s3y, and Ddx3y, at similar percentages to the human population were shown to have accelerated rates of interstitial and perivascular fibrosis and abnormal echocardiograms. These mice also recovered poorly from the transverse aortic constriction (TAC) model of heart failure and developed left ventricular dysfunction at higher rates. This was attributed to aberrant proliferation of cardiac MEF-SK4 + fibroblasts promoted by mLOY macrophages enriched in profibrotic regulons and lacking in proinflammatory regulons. These pro-fibrotic macrophages localized to heart and eventually resulted in cardiac fibrosis via enhanced TGF-ß1 and suppressed IL-1ß signaling. Furthermore, treatment of mLOY mice with TGFß1 neutralizing antibody was able to improve their cardiac function. This study by Sano et al. was able to provide a causative link between the known association between mLOY and male cardiac disease morbidity and mortality for the first time, and thereby provide a new target for improving human health. CONCLUSIONS: Using a CRISPR-Cas9 induced Y-chromosome ablation mouse model, Sano et al. has proven mosaic loss of Y-chromosome in peripheral myeloid cells to have a causative effect on male mobility and mortality due to male age-related cardiac disease. They traced the mechanism of this effect to hyper-expression of the profibrotic TGF-ß1 and reduced pro-inflammatory IL-1ß signaling, attenuation of which could provide another potential strategy in improving outcomes against age-related diseases in men.

2.
Int J Mol Sci ; 24(4)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36834504

ABSTRACT

Transgenic expression of Cre recombinase driven by a specific promoter is normally used to conditionally knockout a gene in a tissue- or cell-type-specific manner. In αMHC-Cre transgenic mouse model, expression of Cre recombinase is controlled by the myocardial-specific α-myosin heavy chain (αMHC) promoter, which is commonly used to edit myocardial-specific genes. Toxic effects of Cre expression have been reported, including intro-chromosome rearrangements, micronuclei formation and other forms of DNA damage, and cardiomyopathy was observed in cardiac-specific Cre transgenic mice. However, mechanisms associated with Cardiotoxicity of Cre remain poorly understood. In our study, our data unveiled that αMHC-Cre mice developed arrhythmias and died after six months progressively, and none of them survived more than one year. Histopathological examination showed that αMHC-Cre mice had aberrant proliferation of tumor-like tissue in the atrial chamber extended from and vacuolation of ventricular myocytes. Furthermore, the αMHC-Cre mice developed severe cardiac interstitial and perivascular fibrosis, accompanied by significant increase of expression levels of MMP-2 and MMP-9 in the cardiac atrium and ventricular. Moreover, cardiac-specific expression of Cre led to disintegration of the intercalated disc, along with altered proteins expression of the disc and calcium-handling abnormality. Comprehensively, we identified that the ferroptosis signaling pathway is involved in heart failure caused by cardiac-specific expression of Cre, on which oxidative stress results in cytoplasmic vacuole accumulation of lipid peroxidation on the myocardial cell membrane. Taken together, these results revealed that cardiac-specific expression of Cre recombinase can lead to atrial mesenchymal tumor-like growth in the mice, which causes cardiac dysfunction, including cardiac fibrosis, reduction of the intercalated disc and cardiomyocytes ferroptosis at the age older than six months in mice. Our study suggests that αMHC-Cre mouse models are effective in young mice, but not in old mice. Researchers need to be particularly careful when using αMHC-Cre mouse model to interpret those phenotypic impacts of gene responses. As the Cre-associated cardiac pathology matched mostly to that of the patients, the model could also be employed for investigating age-related cardiac dysfunction.


Subject(s)
Atrial Fibrillation , Cardiomyopathies , Ferroptosis , Mice , Animals , Myocytes, Cardiac/metabolism , Atrial Fibrillation/metabolism , Cardiomyopathies/metabolism , Mice, Transgenic , Fibrosis , Mice, Knockout
3.
Int J Mol Sci ; 23(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36361587

ABSTRACT

Liver hepatocellular carcinoma (LIHC) remains a global health challenge with poor prognosis and high mortality. FKBP1A was first discovered as a receptor for the immunosuppressant drug FK506 in immune cells and is critical for various tumors and cancers. However, the relationships between FKBP1A expression, cellular distribution, tumor immunity, and prognosis in LIHC remain unclear. Here, we investigated the expression level of FKBP1A and its prognostic value in LIHC via multiple datasets including ONCOMINE, TIMER, GEPIA, UALCAN, HCCDB, Kaplan-Meier plotter, LinkedOmics, and STRING. Human liver tissue microarray was employed to analyze the characteristics of FKBP1A protein including the expression level and pathological alteration in cellular distribution. FKBP1A expression was significantly higher in LIHC and correlated with tumor stage, grade and metastasis. The expression level of the FKBP1A protein was also increased in LIHC patients along with its accumulation in endoplasmic reticulum (ER). High FKBP1A expression was correlated with a poor survival rate in LIHC patients. The analysis of gene co-expression and the regulatory pathway network suggested that FKBP1A is mainly involved in protein synthesis, metabolism and the immune-related pathway. FKBP1A expression had a significantly positive association with the infiltration of hematopoietic immune cells including B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. Moreover, M2 macrophage infiltration was especially associated with a poor survival prognosis in LIHC. Furthermore, FKBP1A expression was significantly positively correlated with the expression of markers of M2 macrophages and immune checkpoint proteins such as PD-L1, CTLA-4, LAG3 and HAVCR2. Our study demonstrated that FKBP1A could be a potential prognostic target involved in tumor immune cell infiltration in LIHC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Prognosis , Liver Neoplasms/pathology , CD8-Positive T-Lymphocytes/pathology , Biomarkers, Tumor , Gene Expression Profiling , Tacrolimus Binding Proteins/genetics
4.
Cell Biosci ; 12(1): 73, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35642040

ABSTRACT

BACKGROUND: Age-related macular degeneration (AMD) is the leading cause of severe vision loss in patients over 55 years old in the industrialized world. In the past 20 years, approximately 288 million patents have been affected by this disease. Despite this high prevalence, the molecular mechanism for AMD remains unclear, and there remains no effective treatment for this disease. The mosaic loss of Y chromosome (mLOY) has been identified as a common phenomenon in multiple age-related disease (i.e., oncogenesis and cardiovascular disease) has recently been identified by genome-wide analysis to be linked to AMD as well. As the Y chromosome mainly possesses three genomic functions, sister chromatin cohesion, cell cycle mitosis, and apoptotic signaling, here we characterize the Y chromosome euchromatic genes and non-chromosome AMD genes in relevance to cellular proliferation and apoptotic signaling of leukocytes. RESULTS: Using STRING, a publically available database of all protein-protein interaction, Grassmann et al. found the genes on the Y chromosome is mainly believed to take part in three major cellular genomic functions- sister chromatin cohesion, cell cycle mitosis, and apoptotic signaling. Based on data from the Ensembl Genome database, we focus on our discussion on coding genes found in the euchromatins but not the PAR1 and PAR2 regions of the Y chromosomes. All 14 known euchromatic genes on the Y chromosome short arm and all 31 known euchromatic genes on the Y chromosome long arm (Yq) are directly or indirectly involved in the cell cycle (meiosis and mitosis) and proliferation. We sorted non-Y chromosome AMD associated genes into these three categories to identify signaling pathways that may compound with cellular dysregulation due to mLOY. Of the genes associated with AMD, complement pathway genes such as C2, C9 and CFH/ARMD4 are associated with proliferation, receptor-mediated endocytosis genes such as APOE, DAB2 and others associated with apoptotic signaling. Because nucleated cells found in peripheral circulation are mainly composed of leukocytes with reduced expression of CD99, a protein essential for leukocytes adhesion, translocation, and function, mLOY in these cells likely affect retinal degeneration through altered immunological surveillance. In fact, there is precedence that circulating macrophage can stabilize and modify the cardiac rhythm and contractility post ischemic damage. Therefore, the most likely mechanism through which peripheral mLOY affects AMD development in men is through the role affected leukocytes play in retinal proliferation and apoptosis. CONCLUSIONS: mLOY in peripheral blood is newly discovered in AMD by Grassmann et al. as it is a common phenomenon in oncogenesis and cardiac dysfunction. Here the recent data conclude the possible mechanism for the newly identified link between mLOY and AMD, and provide support that mLOY in circulating macrophage-monocyte of affected male patients promotes AMD by targeting the retina and causing macular degeneration.

5.
J Vis Exp ; (183)2022 05 06.
Article in English | MEDLINE | ID: mdl-35604165

ABSTRACT

Calcium induced calcium release signaling (CICR) plays a critical role in many biological processes. Every cellular activity from cell proliferation and apoptosis, development and ageing, to neuronal synaptic plasticity and regeneration have been associated with Ryanodine receptors (RyRs). Despite the importance of calcium signaling, the exact mechanism of its function in early development is unclear. As an organism with a short gestational period, the embryos of Drosophila melanogaster are prime study subjects for investigating the distribution and localization of CICR associated proteins and their regulators during development. However, because of their lipid-rich embryos and chitin-rich chorion, their utility is limited by the difficulty of mounting embryos on glass surfaces. In this work, we introduce a practical protocol that significantly enhances the attachment of Drosophila embryo onto slides and detail methods for successful histochemistry, immunohistochemistry, and in-situ hybridization. The chrome alum gelatin slide-coating method and embryo pre-embedding method dramatically increases the yield in studying Drosophila embryo protein and RNA expression. To demonstrate this approach, we studied DmFKBP12/Calstabin, a well-known regulator of RyR during early embryonic development of Drosophila melanogaster. We identified DmFKBP12 in as early as the syncytial blastoderm stage and report the dynamic expression pattern of DmFKBP12 during development: initially as an evenly distributed protein in the syncytial blastoderm, then preliminarily localizing to the basement layer of the cortex during cellular blastoderm, before distributing in the primitive neuronal and digestion architecture during the three-gem layer phase in early gastrulation. This distribution may explain the critical role RyR plays in the vital organ systems that originate in from these layers: the suboesophageal and supraesophageal ganglion, ventral nervous system, and musculoskeletal system.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Calcium , Drosophila melanogaster/genetics , Embryo, Nonmammalian , Humans , Immunohistochemistry , RNA
6.
Cell Biosci ; 10: 55, 2020.
Article in English | MEDLINE | ID: mdl-32280452

ABSTRACT

BACKGROUND: In the past 30 years, incidences of non-alcoholic fatty liver disease (NAFLD) has risen by 30%. However, there is still no clear mechanism or accurate method of anticipating liver failure. Here we reveal the phase transitions of liquid crystalline qualities in hepatic lipid droplets (HLDs) as a novel method of anticipating prognosis. METHODS: NAFLD was induced by feeding C57BL/6J mice on a high-fat (HiF) diet. These NAFLD livers were then evaluated under polarized microscopy, X-ray diffraction and small-angle scattering, lipid component chromatography analysis and protein expression analysis. Optically active HLDs from mouse model and patient samples were both then confirmed to have liquid crystal characteristics. Liver MAP1LC3A expression was then evaluated to determine the role of autophagy in liquid crystal HLD (LC-HLD) formation. RESULTS: Unlike the normal diet cohort, HiF diet mice developed NAFLD livers containing HLDs exhibiting Maltese cross birefringence, phase transition, and fluidity signature to liquid crystals. These LC-HLDs transitioned to anisotropic crystal at 0 °C and remain crystalline. Temperature increase to 42 °C causes both liquid crystal and crystal HLDs to convert to isotropic droplet form. These isotropic HLDs successfully transition to anisotropic LC with fast temperature decrease and anisotropic crystal with slow temperature decrease. These findings were duplicated in patient liver. Patient LC-HLDs with no inner optical activity were discovered, hinting at lipid saturation as the mechanism through which HLD acquire LC characteristics. Downregulation of MAP1LC3A in conjunction with increased LC-HLD also implicated autophagy in NAFLD LC-HLD formation. CONCLUSIONS: Increasing concentrations of amphiphilic lipids in HLDs favors organization into alternating hydrophilic and hydrophobic layers, which present as LC-HLDs. Thus, evaluating the extent of liquid crystallization with phase transition in HLDs of NAFLD patients may reveal disease severity and predict impending liver damage.

7.
Cell Transplant ; 29: 963689719884888, 2020.
Article in English | MEDLINE | ID: mdl-32180432

ABSTRACT

Apicomplexan parasites have challenged researchers for nearly a century. A major challenge to developing efficient treatments and vaccines is the parasite's ability to change its cellular and molecular makeup to develop intracellular and extracellular niches in its hosts. Ca2+ signaling is an important messenger for the egress of the malaria parasite from the infected erythrocyte, gametogenesis, ookinete motility in the mosquito, and sporozoite invasion of mammalian hepatocytes. Calcium-dependent protein kinases (CDPKs) have crucial functions in calcium signaling at various stages of the parasite's life cycle; this therefore makes them attractive drug targets against malaria. Here, we summarize the functions of the various CDPK isoforms in relation to the malaria life cycle by emphasizing the molecular mechanism of developmental progression within host tissues. We also discuss the current development of anti-malarial drugs, such as how specific bumped kinase inhibitors (BKIs) for parasite CDPKs have been shown to reduce infection in Toxoplasma gondii, Cryptosporidium parvum, and Plasmodium falciparum. Our suggested combinations of BKIs, artemisinin derivatives with peroxide bridge, and inhibitors on the Ca(2+)-ATPase PfATP6 as a potential target should be inspected further as a treatment against malaria.


Subject(s)
Antimalarials/therapeutic use , Malaria/parasitology , Protein Kinases/metabolism , Sporozoites/drug effects , Sporozoites/metabolism , Animals , Cryptosporidium parvum/drug effects , Cryptosporidium parvum/metabolism , Cryptosporidium parvum/pathogenicity , Female , Malaria/drug therapy , Malaria/metabolism , Male , Merozoites/drug effects , Merozoites/metabolism , Merozoites/pathogenicity , Models, Biological , Oocysts/drug effects , Oocysts/metabolism , Oocysts/pathogenicity , Plasmodium falciparum/drug effects , Plasmodium falciparum/metabolism , Plasmodium falciparum/pathogenicity , Protein Kinases/genetics , Sporozoites/pathogenicity , Toxoplasma/drug effects , Toxoplasma/metabolism , Toxoplasma/pathogenicity
8.
Cell Biosci ; 9: 74, 2019.
Article in English | MEDLINE | ID: mdl-31508196

ABSTRACT

Whether neurogenesis occurs in the adult human brain has been a long-debated topic fueled by conflicting data both for and against neurogenesis in the mature brain. Recent reports from two independent teams may have indubitably proven that adult, hippocampal neurogenesis persists throughout the human lifespan. Llorens-Martín et al. found that thousands of immature, neurogenesis related, doublecortin-positive (DCX+) labelled neurons can be detected in the human dentate gyrus (DG) up to the eighth decade of life. While the presence of these DCX+ neurons decrease with age, they are significantly decrease in patient with Alzheimer's disease. Another group have also found mammalian embryonic Hopx+ precursors to persist beyond the early development stage as quiescent Hopx+ radial glial-like neural progenitors during early postnatal period, then as Hopx+ adult dentate neural progenitors. Together, the findings from these two groups suggest that unlike the previously thought, neurogenesis and neuroplasticity can occur well into adulthood in some capacity, at least in the hippocampus. These recent findings that neurogenesis can occur beyond development have brought into questions whether physical exercise can be shown to promote neurogenesis and brain health, as it has been shown to promote the function of other organ systems. Some data has already shown physical exercise to induce adult hippocampal neurogenesis (AHN) as demonstrated by restoration of cognitive functions, improvement of synaptic plasticity, and enhancement of angiogenesis. A large-scale meta-analysis has also demonstrated that 45-60 min of moderate-intensity physical exercise to dramatically improve cognitive functions in human subjects over the age of 50. Given these convergent developments in our understanding of neurogenesis and exercise induced improvement in cognitive function, we speculate that hippocampal neurogenesis can be promoted by physical exercise and discuss the current molecular evidence supporting the likely molecular pathways involved.

9.
Cell Biosci ; 9: 8, 2019.
Article in English | MEDLINE | ID: mdl-30637096

ABSTRACT

BACKGROUND: Calcium signaling are conserved from invertebrates to vertebrates and plays critical roles in many molecular mechanisms of embryogenesis and postnatal development. As a critical component of the signaling pathway, the RyR medicated calcium-induced calcium release signaling system, has been well studied along with their regulator FK506-binding protein 12 (FKBP12/Calstabin). Lack of FKBP12 is known to result in lethal cardiac dysfunction in mouse. However, precisely how FKBP12 is regulated and effects calcium signaling in Drosophila melanogaster remains largely unknown. RESULTS: In this study, we identified both temporal and localization changes in expression of DmFKBP12, a translational and transcriptional regulator of Drosophila RyR (DmRyR) and FKBP12, through embryonic development. DmFKBP12 is first expressed at the syncytial blastoderm stage and undergoes increased expression during the cellular blastoderm and early gastrulation stages. At late gastrulation, DmFKBP12 expression begins to decline until it reaches homeostasis, which it then maintains throughout the rest of development. Throughout these described changes in expression, DmFKBP12 mRNA remain stable, which indicates that protein dynamics are attributed to regulation at the mRNA to protein translation level. In addition to temporal changes in expression, dynamic expression profiles during Drosophila development also revealed DmFKBP12 localization. Although DmFKBP12 is distributed evenly between the anterior to posterior poles of the blastoderm egg, the protein is expressed more strongly in the cortex of the early Drosophila gastrula with the highest concentration found in the basement membrane of the cellular blastoderm. Fertilized egg, through the profile as under-membrane cortex distribution concentering onto basement at cellular blastoderm, to the profile as three-gem layer localization in primitive neuronal and digestion architecture of early Drosophila gastrula. By late gastrulation, DmFKBP12 is no longer identified in the yolk or lumen of duct structures and has relocated to the future brain (suboesophageal and supraesophageal ganglions), ventral nervous system, and muscular system. Throughout these changes in distribution, in situ DmFKBP12 mRNA monitoring detected equal distribution of DmFKBP12 mRNA, once again indicating that regulation of DmFKBP12 occurs at the translational level in Drosophila development. CONCLUSION: As a critical regulator of the DmRyR-FKBP complex, DmFKBP12 expression in Drosophila fluctuates temporally and geographically with the formation of organ systems. These finding indicate that DmFKBP12 and RyR associated calcium signaling plays an essential role in the successful development of Drosophila melanogaster. Further study on the differences between mammalian RyR-FKBP12 and Drosophila DmRyR-FKBP12 can be exploited to develop safe pesticides.

10.
Cell Biosci ; 8: 24, 2018.
Article in English | MEDLINE | ID: mdl-29599964

ABSTRACT

Macrophages are traditionally viewed as a key component of the immunity defense system. Recent studies have identified resident macrophages in multiple organs including the heart, in which the cells perform their crucial role on tissue repair after myocardial infarction (MI). The cardiac-specific macrophages interdigitate with cardiomyocytes particularly at the atrioventricular node region. The integrative communication between macrophage and cardiomyocytes can modulate the contractile function of the heart. Coordinated control of intracellular calcium signaling and intercellular electrical conduction via the syncytium network underlie the synchronized beating of the heart. In this review article, we introduce the concept the syncytium calcium signaling in the cardiomyocytes can modulate gene expression in the resident macrophages and their integration with the cardiomyocytes. The cardiac macrophages originate from bone marrow stem cells, migrate to local via vessel, and settle down as a naturalization process in heart. As the macrophages perform on regulating electrical conduction, and accomplish post MI non-scared completed regeneration or partial regeneration with fibrotic scar at different stage of postnatal development, we understand that multiple functions of cardiac macrophage should carry on with diverse linages. The naturalization process in heart of macrophages to the cardiomyocytes serves important roles to control of electrical signaling and calcium-dependent contractile function of the heart.

11.
BMC Dev Biol ; 18(1): 7, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29587629

ABSTRACT

BACKGROUND: FK506-binding proteins (FKBPs) have become the subject of considerable interest in several fields, leading to the identification of several cellular and molecular pathways in which FKBPs impact prenatal development and pathogenesis of many human diseases. MAIN BODY: This analysis revealed differences between how mammalian and Drosophila FKBPs mechanisms function in relation to the immunosuppressant drugs, FK506 and rapamycin. Differences that could be used to design insect-specific pesticides. (1) Molecular phylogenetic analysis of FKBP family proteins revealed that the eight known Drosophila FKBPs share homology with the human FKBP12. This indicates a close evolutionary relationship, and possible origination from a common ancestor. (2) The known FKBPs contain FK domains, that is, a prolyl cis/trans isomerase (PPIase) domain that mediates immune suppression through inhibition of calcineurin. The dFKBP59, CG4735/Shutdown, CG1847, and CG5482 have a Tetratricopeptide receptor domain at the C-terminus, which regulates transcription and protein transportation. (3) FKBP51 and FKBP52 (dFKBP59), along with Cyclophilin 40 and protein phosphatase 5, function as Hsp90 immunophilin co-chaperones within steroid receptor-Hsp90 heterocomplexes. These immunophilins are potential drug targets in pathways associated with normal physiology and may be used to treat a variety of steroid-based diseases by targeting exocytic/endocytic cycling and vesicular trafficking. (4) By associating with presinilin, a critical component of the Notch signaling pathway, FKBP14 is a downstream effector of Notch activation at the membrane. Meanwhile, Shutdown associates with transposons in the PIWI-interacting RNA pathway, playing a crucial role in both germ cells and ovarian somas. Mutations in or silencing of dFKBPs lead to early embryonic lethality in Drosophila. Therefore, further understanding the mechanisms of FK506 and rapamycin binding to immunophilin FKBPs in endocrine, cardiovascular, and neurological function in both mammals and Drosophila would provide prospects in generating unique, insect specific therapeutics targeting the above cellular signaling pathways. CONCLUSION: This review will evaluate the functional roles of FKBP family proteins, and systematically summarize the similarities and differences between FKBP proteins in Drosophila and Mammals. Specific therapeutics targeting cellular signaling pathways will also be discussed.


Subject(s)
Drosophila melanogaster/metabolism , Mammals/metabolism , Tacrolimus Binding Proteins/chemistry , Tacrolimus Binding Proteins/metabolism , Amino Acid Sequence , Animals , Evolution, Molecular , Humans , Insecticides/toxicity , Phylogeny
12.
Cell Biosci ; 7: 3, 2017.
Article in English | MEDLINE | ID: mdl-28066542

ABSTRACT

BACKGROUND: Massive liquid crystal droplets have been found during embryonic development in more than twenty different tissues and organs, including the liver, brain and kidney. Liquid crystal deposits have also been identified in multiple human pathologies, including vascular disease, liver dysfunction, age-related macular degeneration, and other chronic illnesses. Despite the involvement of liquid crystals in such a large number of human processes, this phenomenon is poorly understood and there are no in vitro systems to further examine the function of liquid crystals in biology. RESULTS: We report the presence of tubular birefringent structures in embryoid bodies (EBs) differentiated in culture. These birefringent tubular structures initiate at the EB surface and penetrated the cortex at a variety of depths. Under crossed polarized light, these tubules are seen as a collection of birefringent Maltese crosses and tubules with birefringent walls and a non-birefringent lumen. The fluidity of these birefringent structures under pressure application led to elongation and widening, which was partially recoverable with pressure release. These birefringent structures also displayed heat triggered phase transition from liquid crystal to isotropic status that is partially recoverable with return to ambient temperature. These pressure and temperature triggered changes confirm the birefringent structures as liquid crystals. The first report of liquid crystal so early in development. CONCLUSION: The structure of the liquid crystal tubule network we observed distributed throughout the differentiated embryoid bodies may function as a transportation network for nutrients and metabolic waste during EB growth, and act as a precursor to the vascular system. This observation not only reveals the involvement of liquid crystals earlier than previously known, but also provides a method for studying liquid crystals in vitro.

13.
Pathog Dis ; 71(1): 81-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24376119

ABSTRACT

Accelerated bone loss leading to osteopenia, osteoporosis, and bone fracture is a major health problem that is increasingly common in human immunodeficiency virus (HIV)-infected patients. The underlying pathogenesis is unclear but occurs in both treatment naïve and individuals receiving antiretroviral therapies. We developed an HIV-1 transgenic rat that exhibits many key features of HIV disease including HIV-1-induced changes in bone mineral density (BMD). A key determinant in the rate of bone loss is the differentiation of osteoclasts, the cells responsible for bone resorption. We found HIV-1 transgenic osteoclast precursors (OCP) express higher levels of suppressor of cytokine signaling-1 (SOCS-1) and TNF receptor-associated factor 6 (TRAF6) and are resistant to interferon-gamma (IFN-γ) mediated suppression of osteoclast differentiation. Our data suggest that dysregulated SOCS-1 expression by HIV-1 transgenic OCP promotes osteoclastogenesis leading to the accelerated bone loss observed in this animal model. We propose that elevated SOCS-1 expression in OCP antagonizes the inhibitory effects of IFN-γ and enhances receptor activator of NF-kB ligand (RANKL) signaling that drives osteoclast differentiation and activation. Understanding the molecular mechanisms of HIV-associated BMD changes has the potential to detect and treat bone metabolism disturbances early and improve the quality of life in patients.


Subject(s)
HIV-1/physiology , Host-Pathogen Interactions , Osteoclasts/physiology , Suppressor of Cytokine Signaling Proteins/biosynthesis , Animals , Bone Diseases, Metabolic/etiology , Cells, Cultured , Cytokines/metabolism , Humans , Rats, Transgenic , Signal Transduction , Suppressor of Cytokine Signaling 1 Protein
14.
Cell Biosci ; 3(1): 27, 2013 Jun 26.
Article in English | MEDLINE | ID: mdl-23803222

ABSTRACT

Hemicentin has come a long way from when it was first identified in C. elegans as him-4 (High incidence of males). The protein is now a recognized player in maintaining the architectural integrity of vertebrate tissues and organs. Highly conserved hemicentin sequences across species indicate this gene's ancient evolutionary roots and functional importance. In mouse, hemicentin is liberally distributed on the cell surface of many cell types, including epithelial cells, endothelial cells of the eye, lung, and uterus, and trophectodermal cells of blastocyst. Recent discoveries have uncovered yet another vital purpose of hemicentin 1. The protein also serves a unique function in mitotic cytokinesis, during which this extracellular matrix protein plays a key role in cleavage furrow maturation. Though understanding of hemicentin function has improved through new discoveries, much about this protein remains mysterious.

15.
Curr HIV Res ; 10(5): 463-8, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22591370

ABSTRACT

Opioid use in HIV infection has been associated with an increased frequency of neurological disease and cognitive impairment and vitamin A deficiency has been linked to progressive HIV disease in drug users. In this report the potential effects of these factors, alone and in combination, on gamma amino butyric acid (GABA)-expression interneurons in hippocampus in the HIV-1 transgenic rat (TG) model were studied. TG and wild-type (WT) F344 Fisher rats deficient in vitamin A from birth were implanted either with a 37.5 mg morphine tablet or with a matching placebo and total numbers of neurons and of parvalbumin+ neurons were quantitated and parvalbumin expression was quantitated in the CA1 hippocampal region of the rats. These studies showed that total neuronal numbers were decreased in the TG versus WT Fisher rats and that this decrease was enhanced by the vitamin A deficient diet and by treatment with morphine. In contrast, there was no significant change noted in numbers of parvalbumin+ neurons. However, levels of parvalbumin expression were decreased for vitamin A deficient and morphine-treated WT rats as compared to WT rats on the normal diet and placebo-treated WT rats. For TG rats, parvalbumin expression was higher for vitamin A deficient TG rats treated with either placebo or morphine than for WT vitamin A deficient rats treated with placebo, and placebo treated vitamin A deficient TG rats showed higher expression than morphine treated vitamin A deficient rats. Expression was also higher for vitamin A deficient morphine-treated rats than for the corresponding WT rat groups and for vitamin A deficient TG rats treated with placebo. For the remaining groups, parvalbumin was similar for the TG and WT rats. These findings suggest that in hippocampus vitamin A deficiency and morphine can increase parvalbumin expression, perhaps as a manifestation of a stress response. Parvalbumin-expressing GABA-ergic interneurons regulate the primary neuronal output from hippocampus that is important for memory and behavior. Therefore, these studies suggest that vitamin A deficiency and morphine might have effects that may impact such outputs and thereby have lasting effects on cognitive status.


Subject(s)
CA1 Region, Hippocampal/pathology , HIV-1/metabolism , Interneurons/metabolism , Morphine/pharmacology , Narcotics/pharmacology , Parvalbumins/biosynthesis , Vitamin A Deficiency/pathology , Animals , CA1 Region, Hippocampal/drug effects , Female , Gene Expression Regulation, Viral/drug effects , HIV-1/drug effects , Immunohistochemistry , Interneurons/drug effects , Male , Pregnancy , Rats , Rats, Transgenic , Receptors, Opioid, mu/biosynthesis , Viral Proteins/biosynthesis
16.
J Neuroimmunol ; 247(1-2): 16-24, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22503372

ABSTRACT

The HIV-1 transgenic (TG) rat has been shown to be a useful model of nervous system disease that occurs in human HIV-1 infection. Studies were, therefore, performed to examine characteristics of the immune response in the periphery and brain of the animals and expression of factors in the nervous system that might be associated with neurotoxicity. Activated splenocytes from wild-type (WT) and TG rats were stimulated with either CD3/CD28 or with lipopolysaccharide (LPS) and examined for proliferative responses and for proinflammatory cytokine (IFN-γ, TNF-α and IL-1ß) secretion. Brain tissue lysates from the rats were also examined for proinflammatory cytokine levels and tissue sections were stained by immunofluorescence for class II MHC+, ED1+ or Iba1+ (for macrophages and microglial cells), and for GFAP+ (for astrocytes) cells and for co-labeling of these cells for TNF-α. Co-labeling was also performed to identify cells expressing HIV-1 gp160, tat, nef and vif. Finally, on Western blots brain tissue lysates were examined for phosphorylation of Erk1/2, p38, JNK-SAPK and Erk5. TG rat splenocyte proliferative responses were higher than for WT with CD3/CD28-stimulation but lower than WT with LPS stimulation. CD3/CD28-stimulated TG rat splenocytes also secreted higher levels of IFN-γ, TNF-α and IL-1ß whereas LPS-stimulated TG rat splenocytes secreted higher levels of only TNF-α than cultures from WT rats. Levels of all three cytokines were higher in brain lysates from TG rats than for WT rats. On immunofluorescence staining of corresponding sections of brain, TG rats contained increased numbers of class II MHC+ and ED1+ cells, and there was also increased co-labeling or these cells as well as astrocytes for TNF-α. Iba1+ cells showed positive staining for all of the HIV proteins whereas astrocytes showed significant positive staining for only nef and vif. Phosphorylation of Erk1/2, p38 and JNK/SAPK was detected for both TG and WT rat tissues with higher levels of phosphorylation forms of these proteins detected in the TG rat brain. Phosphorylation of Erk5, a marker that is associated with specifically neuronal repair, was detected only in TG rat brain. These studies suggest that activated nervous system mononuclear phagocytes and astrocytes expressing HIV-1 gene products in specific patterns are associated with neurodegeneration in the HIV-1 TG rat.


Subject(s)
Brain/metabolism , Gene Expression Regulation, Viral/immunology , HIV/genetics , Neurotoxicity Syndromes/immunology , Neurotoxicity Syndromes/metabolism , Viral Proteins/metabolism , Animals , CD28 Antigens/metabolism , CD3 Complex/toxicity , Cell Proliferation/drug effects , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Gene Expression Regulation, Viral/drug effects , Glial Fibrillary Acidic Protein/metabolism , Humans , Lipopolysaccharides/toxicity , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Monocytes/drug effects , Monocytes/immunology , Monocytes/metabolism , Neurotoxicity Syndromes/genetics , Rats , Rats, Transgenic , Signal Transduction/drug effects , Signal Transduction/immunology , Time Factors , Viral Proteins/genetics
17.
J Neurovirol ; 16(1): 33-40, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20113193

ABSTRACT

Vitamin A (VA) deficiency in human immunodeficiency virus (HIV) infection has been associated with more progressive HIV disease, which may be enhanced by opioid use. In these studies, we examined the effects of VA deficiency and morphine on frontal cortex neuronal numbers in the HIV-1 transgenic (Tg) rat. These studies showed that total numbers of neurons were similar for rats on the VA-deficient diet as for rats on the normal diet and these numbers were not affected by treatment with morphine. In contrast, numbers of neurons that expressed the calcium-binding protein parvalbumin, which is a marker interneurons that express the inhibitory neurotransmitter gamma-aminobutyric acid (GABAergic neurons) were decreased for wild-type (Wt) rats on the VA-deficient diet and for Wt rats treated with morphine. In addition, parvalbumin+ neurons were also decreased for Tg rats on a normal diet but increased to normal levels when these animals were placed on the VA-deficient diet and treated with morphine. Analysis of expression of the genes that code for the HIV regulatory proteins vif, vpr, nef, and tat in frontal cortex and adjacent subcortical white matter showed that tat expression was increased in the morphine-treated Tg rat on the VA-deficient diet as compared to untreated Tg rats on the normal diet and untreated VA-deficient rats. These studies therefore suggest that VA deficiency, opioid exposure, and HIV infection alone and in combination may potentially alter neuronal metabolic activity and induce cellular stress, resulting in the observed changes in levels of parvalbumin expression. The specific mechanisms that underlie these effects require further study.


Subject(s)
Analgesics, Opioid/adverse effects , Gene Expression Regulation, Viral , HIV Infections/pathology , HIV Infections/virology , HIV-1 , Morphine/adverse effects , Neurons/drug effects , Neurons/pathology , Parvalbumins/biosynthesis , Vitamin A Deficiency/pathology , Animals , Cell Count , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Cerebral Cortex/virology , Gene Expression Regulation, Viral/drug effects , Gene Expression Regulation, Viral/physiology , HIV Infections/complications , HIV Infections/metabolism , HIV-1/genetics , HIV-1/metabolism , Humans , Neurons/metabolism , Neurons/virology , Rats , Vitamin A Deficiency/etiology , Vitamin A Deficiency/metabolism , nef Gene Products, Human Immunodeficiency Virus/biosynthesis , nef Gene Products, Human Immunodeficiency Virus/genetics , rev Gene Products, Human Immunodeficiency Virus/biosynthesis , rev Gene Products, Human Immunodeficiency Virus/genetics , tat Gene Products, Human Immunodeficiency Virus/biosynthesis , tat Gene Products, Human Immunodeficiency Virus/genetics , vif Gene Products, Human Immunodeficiency Virus/biosynthesis , vif Gene Products, Human Immunodeficiency Virus/genetics , vpr Gene Products, Human Immunodeficiency Virus/biosynthesis , vpr Gene Products, Human Immunodeficiency Virus/genetics
18.
J Neurovirol ; 15(5-6): 380-9, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19995129

ABSTRACT

The human immunodeficiency virus type 1 (HIV-1) transgenic (Tg) rat model incorporates a noninfectious viral genome that is under similar regulatory control mechanisms in vivo as those that exist with natural infection in humans. Vitamin A (VA) deficiency in humans has been associated with progressive systemic HIV disease and with impaired cognition in rodent models. The effects on of VA deficiency on the development of behavioral abnormalities with HIV infection have not been previously described. In these studies, wild-type (Wt) and Tg rats maintained on either a normal (VA+) or a VA-deficient (VA-) diet were examined for activity in an open field (horizontal activity, total distance, vertical activity, and rearing) and on rotarod testing. On both open field and rotarod testing, the Tg rats performed worse than the Wt rats, with the most severe deficits noted in the TgVA- animals. Analysis of the specific effects of the presence of the HIV transgene and the diet on the performance on the open field tests showed a dominant effect from the transgene on all of the tests, with an effect from the diet on only the number of rearings. On rotarod testing, effects form both the diet and the transgene were observed at lower speeds, at the highest speeds, and on the accelerating rotarod. These studies therefore demonstrate that behavioral and motor abnormalities can be detected in this model and are likely due to similar mechanisms by which humans infected with HIV might develop cognitive-motor impairment in association with VA deficiency.


Subject(s)
AIDS Dementia Complex/complications , AIDS Dementia Complex/physiopathology , HIV-1/genetics , Motor Skills Disorders/etiology , Vitamin A Deficiency/complications , AIDS Dementia Complex/genetics , Animals , Behavior, Animal , Cognition , Cognition Disorders/etiology , Cognition Disorders/virology , Disease Models, Animal , Female , Genome, Viral , Male , Motor Activity , Motor Skills Disorders/virology , Postural Balance , Rats , Rats, Inbred F344 , Rats, Transgenic , Severity of Illness Index , Transgenes/physiology
19.
J Dermatol Sci ; 53(2): 112-9, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19004620

ABSTRACT

BACKGROUND: Skin lesions commonly affect AIDS patients. The pathogenesis of certain dermatologic disorders primarily associated to HIV-1 is unclear, and better forms of therapy for these conditions need to be discovered. Transgenic animal models represent a novel approach for the study of these disorders and for the quest of more effective forms of treatment. OBJECTIVE: Characterize this HIV-1 transgenic rat as a model to study skin diseases related to HIV/AIDS. METHODS: A transgenic rat was developed, using an HIV-1 construct with deleted gag and pol genes. Morphological and genotypical evaluations were followed by cytokine profile characterization of the lesions. RESULTS: We report the characterization of a colony of HIV-1 transgenic rats that developed skin lesions in a frequency of 22.5%. Cutaneous expression of functional HIV-1 transgenes correlated precisely with the severity of the phenotype. In early stages, rats manifested localized areas of xerosis and dispersed papulosquamous lesions. These hyperplastic manifestations were observed in conjunction with an increased epidermal expression of tat protein and a Th1/Th2 profile of cytokines. As the lesions progressed, they formed inflammatory plaques that subsequently ulcerated. Histologically, these lesions displayed a profound lymphocytic infiltrate, epidermal necrosis, and a marked increase of both Th1 and Th2 derived cytokines. Moreover, the presence of circulating IgG antibodies against HIV-1 gp120 was detected. CONCLUSION: This animal model as other HIV-1 transgenic mice described in the past, is not able to fully explain the myriad of skin findings that can occur in HIV-infected humans; however, it represents a potential animal model system for the study of immune-mediated inflammatory skin diseases.


Subject(s)
Dermatitis/pathology , Epidermis/pathology , HIV Infections/complications , HIV-1/genetics , Animals , Cytokines/genetics , Cytokines/metabolism , Dermatitis/immunology , Dermatitis/virology , Disease Models, Animal , Epidermis/immunology , Epidermis/virology , Erythema Multiforme/pathology , Erythema Multiforme/virology , Genotype , HIV Antibodies/blood , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp120/immunology , HIV Infections/immunology , HIV Infections/pathology , HIV Infections/virology , HIV-1/immunology , Hyperplasia , Necrosis , Phenotype , RNA, Messenger/metabolism , Rats , Rats, Transgenic , Severity of Illness Index , Skin Ulcer/pathology , Skin Ulcer/virology , tat Gene Products, Human Immunodeficiency Virus/genetics
20.
J Neuroimmunol ; 185(1-2): 29-36, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17289162

ABSTRACT

The HIV-1 (HIV) transgenic (Tg) rat develops several immune abnormalities in association with clinical impairments that are similar to what are seen with HIV infection in humans. In HIV infection, retinoids and opioids can have separate and potentially combined effects on the clinical course of HIV disease. In these studies, the effects of a vitamin A deficient diet on T cell proinflammatory cytokine and mu opioid receptor (MOR) expression were examined in the Tg and in wild-type (WT) rats. The effects of the diet on HIV gene expression were also analyzed in the Tg rats. Phytohemagglutinin-stimulated T cells from WT rats on the vitamin A diet and from Tg rats on either diet were more likely to either produce increased percentages of T cells expressing intracytoplasmic IFN-gamma, secrete higher levels of TNF-alpha, and express higher levels of MOR mRNA and surface MOR. Mitogen stimulation also increased Tg rat HIV env, tat, and nef mRNA expression with even higher env and nef mRNA produced in association with the vitamin A deficient diet. All together, these data suggest that a vitamin A deficient diet can result in cellular effects that increase T cell proinflammatory responses and HIV expression, which may alter the course of disease in the HIV Tg rat model.


Subject(s)
Cytokines/immunology , Gene Expression Regulation, Viral , HIV-1/immunology , Receptors, Opioid, mu/biosynthesis , Viral Proteins/biosynthesis , Vitamin A Deficiency/virology , Animals , Animals, Genetically Modified , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Gene Expression , HIV-1/genetics , Inflammation , Polymerase Chain Reaction , Rats , Receptors, Opioid, mu/immunology , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...