Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Res ; 1835: 148929, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38599510

ABSTRACT

Temporal order memory is impaired in autism spectrum disorder (ASD) and schizophrenia (SCZ). These disorders, more prevalent in males, result in abnormal dendritic spine pruning during adolescence in layer 3 (L3) medial prefrontal cortex (mPFC), yielding either too many (ASD) or too few (SCZ) spines. Here we tested whether altering spine density in neural circuits including the mPFC could be associated with impaired temporal order memory in male mice. We have shown that α4ßδ GABAA receptors (GABARs) emerge at puberty on spines of L5 prelimbic mPFC (PL) where they trigger pruning. We show here that α4ßδ receptors also increase at puberty in L3 PL (P < 0.0001) and used these receptors as a target to manipulate spine density here. Pubertal injection (14 d) of the GABA agonist gaboxadol, at a dose (3 mg/kg) selective for α4ßδ, reduced L3 spine density by half (P < 0.0001), while α4 knock-out increased spine density âˆ¼ 40 % (P < 0.0001), mimicking spine densities in SCZ and ASD, respectively. In both cases, performance on the mPFC-dependent temporal order recognition task was impaired, resulting in decreases in the discrimination ratio which assesses preference for the novel object: -0.39 ± 0.15, gaboxadol versus 0.52 ± 0.09, vehicle; P = 0.0002; -0.048 ± 0.10, α4 KO versus 0.49 ± 0.04, wild-type; P < 0.0001. In contrast, the number of approaches was unaltered, reflecting unchanged locomotion. These data suggest that altering α4ßδ GABAR expression/activity alters spine density in L3 mPFC and impairs temporal order memory to mimic changes in ASD and SCZ. These findings may provide insight into these disorders.


Subject(s)
Dendritic Spines , Prefrontal Cortex , Receptors, GABA-A , Schizophrenia , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Animals , Receptors, GABA-A/metabolism , Male , Schizophrenia/metabolism , Mice , Dendritic Spines/metabolism , Dendritic Spines/drug effects , Mice, Knockout , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Mice, Inbred C57BL , Isoxazoles/pharmacology , Autistic Disorder/metabolism , Autistic Disorder/pathology , GABA-A Receptor Agonists/pharmacology , Autism Spectrum Disorder/metabolism , Recognition, Psychology/physiology , Recognition, Psychology/drug effects
3.
J Biol Chem ; 299(9): 105162, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37586586

ABSTRACT

Sphingomyelin synthase (SMS)-related protein (SMSr) is a phosphatidylethanolamine phospholipase C (PE-PLC) that is conserved and ubiquitous in mammals. However, its biological function is still not clear. We previously observed that SMS1 deficiency-mediated glucosylceramide accumulation caused nonalcoholic fatty liver diseases (NAFLD), including nonalcoholic steatohepatitis (NASH) and liver fibrosis. Here, first, we evaluated high-fat diet/fructose-induced NAFLD in Smsr KO and WT mice. Second, we evaluated whether SMSr deficiency can reverse SMS1 deficiency-mediated NAFLD, using Sms1/Sms2 double and Sms1/Sms2/Smsr triple KO mice. We found that SMSr/PE-PLC deficiency attenuated high-fat diet/fructose-induced fatty liver and NASH, and attenuated glucosylceramide accumulation-induced NASH, fibrosis, and tumor formation. Further, we found that SMSr/PE-PLC deficiency reduced the expression of many inflammatory cytokines and fibrosis-related factors, and PE supplementation in vitro or in vivo mimicked the condition of SMSr/PE-PLC deficiency. Furthermore, we demonstrated that SMSr/PE-PLC deficiency or PE supplementation effectively prevented membrane-bound ß-catenin transfer to the nucleus, thereby preventing tumor-related gene expression. Finally, we observed that patients with NASH had higher SMSr protein levels in the liver, lower plasma PE levels, and lower plasma PE/phosphatidylcholine ratios, and that human plasma PE levels are negatively associated with tumor necrosis factor-α and transforming growth factor ß1 levels. In conclusion, SMSr/PE-PLC deficiency causes PE accumulation, which can attenuate fatty liver, NASH, and fibrosis. These results suggest that SMSr/PE-PLC inhibition therapy may mitigate NAFLD.


Subject(s)
Neoplasms , Non-alcoholic Fatty Liver Disease , Transferases (Other Substituted Phosphate Groups) , Animals , Humans , Mice , Fructose/adverse effects , Glucosylceramides/metabolism , Liver/metabolism , Liver Cirrhosis/pathology , Neoplasms/genetics , Neoplasms/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Phosphatidylethanolamines/blood , Transferases (Other Substituted Phosphate Groups)/genetics , Transferases (Other Substituted Phosphate Groups)/metabolism , Mice, Knockout , Male , Female , Diet, High-Fat/adverse effects
4.
Contemp Clin Trials ; 43: 200-8, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26079196

ABSTRACT

INTRODUCTION: Despite the high prevalence of obesity among African-American women and modest success in behavioral weight loss interventions, the development and testing of weight management interventions using a community-based participatory research (CBPR) approach have been limited. Doing Me!: Sisters Standing Together for Healthy Mind and Body (Doing Me!) is an intervention adapted from an evidence-based behavioral obesity intervention using a CBPR approach. The purpose of Doing Me! is to test the feasibility and acceptability of this adapted intervention and determine its efficacy in achieving improvements in anthropometrics, diet, and physical activity. METHODS: Sixty African-American women, from a low-income, urban community, aged 30-65 years will be randomized to one of two arms: 16-week Doing Me! (n = 30) or waitlist control (n = 30). Doing Me! employs CBPR methodology to involve community stakeholders and members during the planning, development, implementation, and evaluation phases of the intervention. There will be thirty-two 90-minute sessions incorporating 45 min of instruction on diet, physical activity, and/or weight management plus 45 min of physical activity. Data will be collected at baseline and post-intervention (16 weeks). DISCUSSION: Doing Me! is one of the first CBPR studies to examine the feasibility/acceptability of an adapted evidence-based behavioral weight loss intervention designed for obese African-American women. CBPR may be an effective strategy for implementing a weight management intervention among this high-risk population.


Subject(s)
Black or African American , Health Education/organization & administration , Obesity/psychology , Obesity/therapy , Weight Loss , Adult , Aged , Chicago , Community-Based Participatory Research , Diet , Exercise , Female , Goals , Humans , Middle Aged , Obesity/ethnology , Pilot Projects , Poverty , Research Design , Self Efficacy , Self-Control , Urban Population
SELECTION OF CITATIONS
SEARCH DETAIL
...