Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Health Insights ; 16: 11786302221078430, 2022.
Article in English | MEDLINE | ID: mdl-35173446

ABSTRACT

Passive sampling using diffusive samplers has become popular as a convenient means of occupational compliance sampling for volatile organic compounds (VOCs). However, diffusive samplers possess sensitivity limitations when sampling low concentrations and for short durations. To reduce these limitations, our research team has been developing a novel method of sample recovery called photothermal desorption (PTD), which uses high energy visible light pulses to desorb analytes from sampling media. Newly designed passive samplers that will use PTD will be equipped with windscreens in a similar design with the 3M OVM. In a preliminary design effort, the present work sought to find a suitable, windscreen for future use in a PTD-compatible diffusive sampler prototype that would be similar to those found in commercially available diffusive samplers. To do so, 2 stainless steel windscreens (wire diameters 0.015″ and 0.0055″ respectively) were compared to a standard windscreen by exposing modified (ie, steel mesh installed) and non-modified 3M OVM samplers to 3 analytes. To mimic in-field conditions, each sampler was exposed to analyte concentrations at their short-term and personal exposure limits (STELs and PELs). From these comparisons, it was determined that the 0.0055″ mesh was most similar to the standard windscreen in contributing to sample collection based on the uptake and concentration determinations for each analyte and concentration.

2.
J Cachexia Sarcopenia Muscle ; 11(6): 1705-1722, 2020 12.
Article in English | MEDLINE | ID: mdl-32881361

ABSTRACT

BACKGROUND: In the context of mass regulation, 'muscle memory' can be defined as long-lasting cellular adaptations to hypertrophic exercise training that persist during detraining-induced atrophy and may facilitate future adaptation. The cellular basis of muscle memory is not clearly defined but may be related to myonuclear number and/or epigenetic changes within muscle fibres. METHODS: Utilizing progressive weighted wheel running (PoWeR), a novel murine exercise training model, we explored myonuclear dynamics and skeletal muscle miRNA levels with training and detraining utilizing immunohistochemistry, single fibre myonuclear analysis, and quantitative analysis of miRNAs. We also used a genetically inducible mouse model of fluorescent myonuclear labelling to study myonuclear adaptations early during exercise. RESULTS: In the soleus, oxidative type 2a fibres were larger after 2 months of PoWeR (P = 0.02), but muscle fibre size and myonuclear number did not return to untrained levels after 6 months of detraining. Soleus type 1 fibres were not larger after PoWeR but had significantly more myonuclei, as well as central nuclei (P < 0.0001), the latter from satellite cell-derived or resident myonuclei, appearing early during training and remaining with detraining. In the gastrocnemius muscle, oxidative type 2a fibres of the deep region were larger and contained more myonuclei after PoWeR (P < 0.003), both of which returned to untrained levels after detraining. In the gastrocnemius and plantaris, two muscles where myonuclear number was comparable with untrained levels after 6 months of detraining, myonuclei were significantly elongated with detraining (P < 0.0001). In the gastrocnemius, miR-1 was lower with training and remained lower after detraining (P < 0.002). CONCLUSIONS: This study found that (i) myonuclei gained during hypertrophy are lost with detraining across muscles, even in oxidative fibres; (ii) complete reversal of muscle adaptations, including myonuclear number, to untrained levels occurs within 6 months in the plantaris and gastrocnemius; (iii) the murine soleus is resistant to detraining; (iv) myonuclear accretion occurs early with wheel running and can be uncoupled from muscle fibre hypertrophy; (v) resident (non-satellite cell-derived) myonuclei can adopt a central location; (vi) myonuclei change shape with training and detraining; and (vii) miR-1 levels may reflect a memory of previous adaptation that facilitates future growth.


Subject(s)
MicroRNAs/genetics , Animals , Female , Mice , Mice, Inbred C57BL , Motor Activity , Muscle, Skeletal , Satellite Cells, Skeletal Muscle
3.
Am J Physiol Cell Physiol ; 316(5): C649-C654, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30840493

ABSTRACT

Myonuclei gained during exercise-induced skeletal muscle hypertrophy may be long-lasting and could facilitate future muscle adaptability after deconditioning, a concept colloquially termed "muscle memory." The evidence for this is limited, mostly due to the lack of a murine exercise-training paradigm that is nonsurgical and reversible. To address this limitation, we developed a novel progressive weighted-wheel-running (PoWeR) model of murine exercise training to test whether myonuclei gained during exercise persist after detraining. We hypothesized that myonuclei acquired during training-induced hypertrophy would remain following loss of muscle mass with detraining. Singly housed female C57BL/6J mice performed 8 wk of PoWeR, while another group performed 8 wk of PoWeR followed by 12 wk of detraining. Age-matched sedentary cage-dwelling mice served as untrained controls. Eight weeks of PoWeR yielded significant plantaris muscle fiber hypertrophy, a shift to a more oxidative phenotype, and greater myonuclear density than untrained mice. After 12 wk of detraining, the plantaris muscle returned to an untrained phenotype with fewer myonuclei. A finding of fewer myonuclei simultaneously with plantaris deconditioning argues against a muscle memory mechanism mediated by elevated myonuclear density in primarily fast-twitch muscle. PoWeR is a novel, practical, and easy-to-deploy approach for eliciting robust hypertrophy in mice, and our findings can inform future research on the mechanisms underlying skeletal muscle adaptive potential and muscle memory.


Subject(s)
Muscle Fibers, Skeletal/physiology , Physical Conditioning, Animal/methods , Physical Conditioning, Animal/physiology , Weight-Bearing/physiology , Animals , Female , Hypertrophy/pathology , Mice , Mice, Inbred C57BL , Muscle Fibers, Skeletal/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...