Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Mol Neurobiol ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696065

ABSTRACT

Heterozygous loss-of-function mutations in the progranulin gene (GRN) are a major cause of frontotemporal dementia due to progranulin haploinsufficiency; complete deficiency of progranulin causes neuronal ceroid lipofuscinosis. Several progranulin-deficient mouse models have been generated, including both knockout mice and knockin mice harboring a common patient mutation (R493X). However, the GrnR493X mouse model has not been characterized completely. Additionally, while homozygous GrnR493X and Grn knockout mice have been extensively studied, data from heterozygous mice is still limited. Here, we performed more in-depth characterization of heterozygous and homozygous GrnR493X knockin mice, which includes biochemical assessments, behavioral studies, and analysis of fluid biomarkers. In the brains of homozygous GrnR493X mice, we found increased phosphorylated TDP-43 along with increased expression of lysosomal genes, markers of microgliosis and astrogliosis, pro-inflammatory cytokines, and complement factors. Heterozygous GrnR493X mice did not have increased TDP-43 phosphorylation but did exhibit limited increases in lysosomal and inflammatory gene expression. Behavioral studies found social and emotional deficits in GrnR493X mice that mirror those observed in Grn knockout mouse models, as well as impairment in memory and executive function. Overall, the GrnR493X knockin mouse model closely phenocopies Grn knockout models. Lastly, in contrast to homozygous knockin mice, heterozygous GrnR493X mice do not have elevated levels of fluid biomarkers previously identified in humans, including neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) in both plasma and CSF. These results may help to inform pre-clinical studies that use this Grn knockin mouse model and other Grn knockout models.

2.
Clin Pharmacol Ther ; 115(5): 1152-1161, 2024 May.
Article in English | MEDLINE | ID: mdl-38294091

ABSTRACT

For some patients with psoriasis, orally administered small molecule inhibitors of interleukin (IL)-17A may represent a convenient alternative to IL-17A-targeting monoclonal antibodies. This first-in-human study assessed the safety, tolerability, pharmacokinetics (PKs), and peripherally circulating IL-17A target engagement profile of single or multiple oral doses of the small molecule IL-17A inhibitor LY3509754 (NCT04586920). Healthy participants were randomly assigned to receive LY3509754 or placebo in sequential escalating single ascending dose (SAD; dose range 10-2,000 mg) or multiple ascending dose (MAD; dose range 100-1,000 mg daily for 14 days) cohorts. The study enrolled 91 participants (SAD, N = 51 and MAD, N = 40) aged 21-65 years (71% men). LY3509754 had a time to maximum concentration (Tmax) of 1.5-3.5 hours, terminal half-life of 11.4-19.1 hours, and exhibited dose-dependent increases in exposure. LY3509754 had strong target engagement, indicated by elevated plasma IL-17A levels within 12 hours of dosing. Four participants from the 400-mg (n = 1) and 1,000-mg (n = 3) MAD cohorts experienced increased liver transaminases or acute hepatitis (onset ≥ 12 days post-last LY3509754 dose), consistent with drug-induced liver injury (DILI). One case of acute hepatitis was severe, resulted in temporary hospitalization, and was classified as a serious adverse event. No adverse effects on other major organ systems were observed. Liver biopsies from three of the four participants revealed lymphocyte-rich, moderate-to-severe lobular inflammation. We theorize that the DILI relates to an off-target effect rather than IL-17A inhibition. In conclusion, despite strong target engagement and a PK profile that supported once-daily administration, this study showed that oral dosing with LY3509754 was poorly tolerated.


Subject(s)
Hepatitis , Psoriasis , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Administration, Oral , Dose-Response Relationship, Drug , Healthy Volunteers , Interleukin-17 , Psoriasis/drug therapy
3.
Org Lett ; 26(2): 488-492, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38197784

ABSTRACT

The indolizidine core of virosinine A was synthesized by means of a microwave-promoted cascade reaction featuring 5-exo-trig iminyl radical cyclization, thiyl radical elimination, and intramolecular imine alkylation. The resulting bicyclic iminium ion underwent stereoselective reduction by Red-Al to deliver the target compound. DFT calculations suggested that both the radical cyclization and thiyl radical elimination steps are reversible at high reaction temperatures.

4.
bioRxiv ; 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-37398305

ABSTRACT

Heterozygous loss-of-function mutations in the progranulin gene (GRN) are a major cause of frontotemporal dementia due to progranulin haploinsufficiency; complete deficiency of progranulin causes neuronal ceroid lipofuscinosis. Several progranulin-deficient mouse models have been generated, including both knockout mice and knockin mice harboring a common patient mutation (R493X). However, the GrnR493X mouse model has not been characterized completely. Additionally, while homozygous GrnR493X and Grn knockout mice have been extensively studied, data from heterozygous mice is still limited. Here, we performed more in-depth characterization of heterozygous and homozygous GrnR493X knockin mice, which includes biochemical assessments, behavioral studies, and analysis of fluid biomarkers. In the brains of homozygous GrnR493X mice, we found increased phosphorylated TDP-43 along with increased expression of lysosomal genes, markers of microgliosis and astrogliosis, pro-inflammatory cytokines, and complement factors. Heterozygous GrnR493X mice did not have increased TDP-43 phosphorylation but did exhibit limited increases in lysosomal and inflammatory gene expression. Behavioral studies found social and emotional deficits in GrnR493X mice that mirror those observed in Grn knockout mouse models, as well as impairment in memory and executive function. Overall, the GrnR493X knockin mouse model closely phenocopies Grn knockout models. Lastly, in contrast to homozygous knockin mice, heterozygous GrnR493X mice do not have elevated levels of fluid biomarkers previously identified in humans, including neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) in both plasma and CSF. These results may help to inform pre-clinical studies that use this Grn knockin mouse model and other Grn knockout models.

5.
J Biol Chem ; 299(12): 105475, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37981208

ABSTRACT

Heterozygous GRN (progranulin) mutations cause frontotemporal dementia (FTD) due to haploinsufficiency, and increasing progranulin levels is a major therapeutic goal. Several microRNAs, including miR-29b, negatively regulate progranulin protein levels. Antisense oligonucleotides (ASOs) are emerging as a promising therapeutic modality for neurological diseases, but strategies for increasing target protein levels are limited. Here, we tested the efficacy of ASOs as enhancers of progranulin expression by sterically blocking the miR-29b binding site in the 3' UTR of the human GRN mRNA. We found 16 ASOs that increase progranulin protein in a dose-dependent manner in neuroglioma cells. A subset of these ASOs also increased progranulin protein in iPSC-derived neurons and in a humanized GRN mouse model. In FRET-based assays, the ASOs effectively competed for miR-29b from binding to the GRN 3' UTR RNA. The ASOs increased levels of newly synthesized progranulin protein by increasing its translation, as revealed by polysome profiling. Together, our results demonstrate that ASOs can be used to effectively increase target protein levels by partially blocking miR binding sites. This ASO strategy may be therapeutically feasible for progranulin-deficient FTD as well as other conditions of haploinsufficiency.


Subject(s)
Frontotemporal Dementia , MicroRNAs , Oligonucleotides, Antisense , Progranulins , Animals , Humans , Mice , 3' Untranslated Regions , Binding Sites , Frontotemporal Dementia/genetics , Intercellular Signaling Peptides and Proteins/genetics , MicroRNAs/genetics , Mutation , Oligonucleotides, Antisense/genetics , Progranulins/genetics , RNA, Messenger/genetics
6.
J Org Chem ; 88(14): 10287-10297, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37390469

ABSTRACT

Microwave irradiation of O-phenyloximes triggers N-O homolysis and 1,5-hydrogen atom transfer (HAT), resulting in formal γ-C-H functionalization of ketones after trapping of the radical intermediate and in situ imine hydrolysis. The Lewis acid InCl3·H2O facilitated HAT, enabling functionalization of benzylic and nonbenzylic secondary carbon atoms. Functionalization of primary carbons was feasible but afforded low yields, requiring ClCH2CO2H instead of InCl3·H2O as an additive. C-O and C-C bond formation could both be accomplished by this method.

7.
Int Immunopharmacol ; 110: 109010, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35785731

ABSTRACT

OBJECTIVE: Post-translational modifications of extracellular matrix proteins such as fibrinogen may lead to tolerance loss and have been implicated in rheumatoid arthritis (RA) pathogenesis. The purpose of this study was to determine whether fibrinogen (FIB) modified with citrulline (CIT), malondialdehyde-acetaldehyde (MAA) or both leads to altered macrophage polarization, peptidyl arginine deiminase (PAD) expression, or production of citrullinated proteins. METHODS: PMA-treated U-937 cells (M0 cells) were stimulated with MAA, CIT or MAA-CIT modified FIB. Macrophage (M1/M2) phenotypes were evaluated by flow cytometry, RT-PCR, and ELISA. PAD enzyme expression and protein citrullination was evaluated using RT-PCR and Western Blot. RESULTS: Flow cytometry revealed that M0 macrophages stimulated with FIB-MAA-CIT resulted in mixed M1/M2 phenotypes as demonstrated by cell surface expression and mRNA levels of CD14, CD192, CD163, and CD206 (p < 0.001 vs. others), and the release of IL-18, IP-10, CCL22, and IL-13 (p < 0.001 vs. others). While FIB-MAA treated M0 cells demonstrated a mixed M1/M2 phenotype, cytokine and cell surface markers differed from FIB-MAA-CIT. Finally, M0 cells treated with FIB-CIT demonstrated markers and cytokines consistent with only the M1-like phenotype. Exposure of M0 cells to FIB-MAA-CIT (at 48 h) and FIB-MAA (at 24 h) led to increased mRNA expression and protein expression of PAD2 (p < 0.001) with increased protein citrullination. CONCLUSION: These findings suggest that MAA-modification and citrullination of FIB, in isolation or combination, yield specific effects on macrophage polarization, PAD expression and citrullination that ultimately may induce inflammatory and fibrotic responses associated with RA.


Subject(s)
Arthritis, Rheumatoid , Fibrinogen , Acetaldehyde , Citrulline/metabolism , Fibrinogen/metabolism , Humans , Hydrolases , Macrophages/metabolism , Malondialdehyde , Protein-Arginine Deiminases/metabolism , RNA, Messenger
8.
Nat Commun ; 12(1): 6191, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34702830

ABSTRACT

Class 2 CRISPR systems are exceptionally diverse, nevertheless, all share a single effector protein that contains a conserved RuvC-like nuclease domain. Interestingly, the size of these CRISPR-associated (Cas) nucleases ranges from >1000 amino acids (aa) for Cas9/Cas12a to as small as 400-600 aa for Cas12f. For in vivo genome editing applications, compact RNA-guided nucleases are desirable and would streamline cellular delivery approaches. Although miniature Cas12f effectors have been shown to cleave double-stranded DNA, targeted DNA modification in eukaryotic cells has yet to be demonstrated. Here, we biochemically characterize two miniature type V-F Cas nucleases, SpCas12f1 (497 aa) and AsCas12f1 (422 aa), and show that SpCas12f1 functions in both plant and human cells to produce targeted modifications with outcomes in plants being enhanced with short heat pulses. Our findings pave the way for the development of miniature Cas12f1-based genome editing tools.


Subject(s)
CRISPR-Associated Proteins/metabolism , DNA/metabolism , Endodeoxyribonucleases/metabolism , Gene Editing , Bacillales/enzymology , CRISPR-Associated Proteins/chemistry , CRISPR-Cas Systems , Clostridiales/enzymology , Endodeoxyribonucleases/chemistry , HEK293 Cells , Humans , Plant Cells , Protein Multimerization , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Ribonucleoproteins/chemistry , Ribonucleoproteins/metabolism , Zea mays
9.
Plant Biotechnol J ; 19(10): 2000-2010, 2021 10.
Article in English | MEDLINE | ID: mdl-33934470

ABSTRACT

CRISPR-Cas is a powerful DNA double-strand break technology with wide-ranging applications in plant genome modification. However, the efficiency of genome editing depends on various factors including plant genetic transformation processes and types of modifications desired. Agrobacterium infection is the preferred method of transformation and delivery of editing components into the plant cell. While this method has been successfully used to generate gene knockouts in multiple crops, precise nucleotide replacement and especially gene insertion into a pre-defined genomic location remain highly challenging. Here, we report an efficient, selectable marker-free site-specific gene insertion in maize using Agrobacterium infection. Advancements in maize transformation and new vector design enabled increase of targeted insertion frequencies by two orders of magnitude in comparison to conventional Agrobacterium-mediated delivery. Importantly, these advancements allowed not only a significant improvement of the frequency, but also of the quality of generated events. These results further enable the application of genome editing for trait product development in a wide variety of crop species amenable to Agrobacterium-mediated transformation.


Subject(s)
Agrobacterium , Zea mays , Agrobacterium/genetics , CRISPR-Cas Systems/genetics , Gene Editing , Genome, Plant , Mutagenesis, Insertional , Zea mays/genetics
10.
J Neurogenet ; 35(3): 154-167, 2021 09.
Article in English | MEDLINE | ID: mdl-33522326

ABSTRACT

Drosophila melanogaster males reduce courtship behaviour after mating failure. In the lab, such conditioned courtship suppression, aka 'courtship conditioning', serves as a complex learning and memory assay. Interestingly, variations in the courtship conditioning assay can establish different types of memory. Here, we review research investigating the underlying cellular and molecular mechanisms that allow male flies to form memories of previous mating failures.


Subject(s)
Courtship , Drosophila melanogaster/physiology , Memory/physiology , Sexual Behavior, Animal/physiology , Animals , Conditioning, Classical , Male
11.
Front Plant Sci ; 11: 535, 2020.
Article in English | MEDLINE | ID: mdl-32431725

ABSTRACT

Modern maize hybrids often contain biotech and native traits. To-date all biotech traits have been randomly inserted in the genome. Consequently, developing hybrids with multiple traits is expensive, time-consuming, and complex. Here we report using CRISPR-Cas9 to generate a complex trait locus (CTL) to facilitate trait stacking. A CTL consists of multiple preselected sites positioned within a small well-characterized chromosomal region where trait genes are inserted. We generated individual lines, each carrying a site-specific insertion landing pad (SSILP) that was targeted to a preselected site and capable of efficiently receiving a transgene via recombinase-mediated cassette exchange. The selected sites supported consistent transgene expression and the SSILP insertion had no effect on grain yield. We demonstrated that two traits residing at different sites within a CTL can be combined via genetic recombination. CTL technology is a major step forward in the development of multi-trait maize hybrids.

12.
Nat Biotechnol ; 38(5): 579-581, 2020 05.
Article in English | MEDLINE | ID: mdl-32152597

ABSTRACT

We created waxy corn hybrids by CRISPR-Cas9 editing of a waxy allele in 12 elite inbred maize lines, a process that was more than a year faster than conventional trait introgression using backcrossing and marker-assisted selection. Field trials at 25 locations showed that CRISPR-waxy hybrids were agronomically superior to introgressed hybrids, producing on average 5.5 bushels per acre higher yield.


Subject(s)
Plant Proteins/genetics , Quantitative Trait Loci , Zea mays/growth & development , CRISPR-Cas Systems , Crop Production , Gene Editing/methods , Genetic Introgression , Sequence Deletion , Zea mays/genetics
13.
Crit Care Med ; 47(12): e1033-e1034, 2019 12.
Article in English | MEDLINE | ID: mdl-31738257
14.
Commun Biol ; 2: 383, 2019.
Article in English | MEDLINE | ID: mdl-31646186

ABSTRACT

CRISPR-Cas systems are robust and facile tools for manipulating the genome, epigenome and transcriptome of eukaryotic organisms. Most groups use class 2 effectors, such as Cas9 and Cas12a, however, other CRISPR-Cas systems may provide unique opportunities for genome engineering. Indeed, the multi-subunit composition of class 1 systems offers to expand the number of domains and functionalities that may be recruited to a genomic target. Here we report DNA targeting in Zea mays using a class 1 type I-E CRISPR-Cas system from S. thermophilus. First, we engineer its Cascade complex to modulate gene expression by tethering a plant transcriptional activation domain to 3 different subunits. Next, using an immunofluorescent assay, we confirm Cascade cellular complex formation and observe enhanced gene activation when multiple subunits tagged with the transcriptional activator are combined. Finally, we examine Cascade mediated gene activation at chromosomal DNA targets by reprogramming Zea mays cells to change color.


Subject(s)
CRISPR-Cas Systems , Genetic Engineering/methods , Zea mays/genetics , Biolistics , Chromosomes, Plant/genetics , DNA, Plant/genetics , Genes, Plant , Plasmids/genetics , Streptococcus thermophilus/genetics , Transcriptional Activation , Zea mays/embryology
15.
Pragmat Obs Res ; 10: 29-39, 2019.
Article in English | MEDLINE | ID: mdl-31213944

ABSTRACT

Background: The design of inhaler devices may potentially influence adherence/persistence and outcomes in asthma. Objective: The primary objective was to assess asthma control and any change in the quality of life in patients using an intuitive dry powder inhaler containing fluticasone propionate/salmeterol (AirFluSal® Forspiro®) for the treatment of asthma in everyday practice. Methods: ASSURE was a multicenter, noninterventional, open-label, prospective study in patients with asthma, aged ≥12 years and treated with the Forspiro device in Denmark, Sweden and Norway. Patients' opinions of their asthma control were assessed by the Asthma Control Test (ACT) questionnaire and asthma-related quality of life by the Mini Asthma Quality of Life Questionnaire (miniAQLQ) at baseline and at two follow-up visits (approximately 4-8-week intervals). Results: Of 321 patients enrolled in the study, 299 received at least one dose of fluticasone propionate/salmeterol via the Forspiro device and 204 had evaluable data at the baseline visit and at least one later visit. Patients showed improvements in asthma control and quality of life during the study. The mean sum score of ACT increased from 18.0 (SD 4.5) at visit 1 to 19.9 (4.2) at visit 2 and 20.5 (4.3) at visit 3. Overall, 38.2% of patients improved by the minimal clinically important difference (MCID) of ≥3 points (45.6% among those with a baseline score below 23 [ie, not already well controlled]). The mean score on the miniAQLQ increased from 5.16 (SD 1.24) at visit 1 to 5.58 (SD 1.20) at visit 2 and 5.82 (SD 1.04) at visit 3. Overall, 42.6% of patients improved by the MCID of ≥0.5. Conclusion: This real-life study suggests that treatment with fluticasone propionate/salmeterol via the Forspiro device can improve asthma symptom control and quality of life.

16.
Dis Model Mech ; 12(3)2019 03 25.
Article in English | MEDLINE | ID: mdl-30923190

ABSTRACT

Technology has led to rapid progress in the identification of genes involved in neurodevelopmental disorders such as intellectual disability (ID), but our functional understanding of the causative genes is lagging. Here, we show that the SWI/SNF chromatin remodelling complex is one of the most over-represented cellular components disrupted in ID. We investigated the role of individual subunits of this large protein complex using targeted RNA interference in post-mitotic memory-forming neurons of the Drosophila mushroom body (MB). Knockdown flies were tested for defects in MB morphology, short-term memory and long-term memory. Using this approach, we identified distinct roles for individual subunits of the Drosophila SWI/SNF complex. Bap60, Snr1 and E(y)3 are required for pruning of the MBγ neurons during pupal morphogenesis, while Brm and Osa are required for survival of MBγ axons during ageing. We used the courtship conditioning assay to test the effect of MB-specific SWI/SNF knockdown on short- and long-term memory. Several subunits, including Brm, Bap60, Snr1 and E(y)3, were required in the MB for both short- and long-term memory. In contrast, Osa knockdown only reduced long-term memory. Our results suggest that individual components of the SWI/SNF complex have different roles in the regulation of structural plasticity, survival and functionality of post-mitotic MB neurons. This study highlights the many possible processes that might be disrupted in SWI/SNF-related ID disorders. Our broad phenotypic characterization provides a starting point for understanding SWI/SNF-mediated gene regulatory mechanisms that are important for development and function of post-mitotic neurons.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Drosophila melanogaster/metabolism , Memory , Mushroom Bodies/innervation , Mushroom Bodies/metabolism , Transcription Factors/metabolism , Aging/metabolism , Animals , Courtship , Drosophila Proteins/metabolism , Female , Genes, Dominant , Intellectual Disability/genetics , Male , Morphogenesis , Neuronal Plasticity
17.
Ann Emerg Med ; 73(4): 334-344, 2019 04.
Article in English | MEDLINE | ID: mdl-30661855

ABSTRACT

STUDY OBJECTIVE: The Third International Consensus Definitions (Sepsis-3) Task Force recommended the use of the quick Sequential [Sepsis-related] Organ Failure Assessment (qSOFA) score to screen patients for sepsis outside of the ICU. However, subsequent studies raise concerns about the sensitivity of qSOFA as a screening tool. We aim to use machine learning to develop a new sepsis screening tool, the Risk of Sepsis (RoS) score, and compare it with a slate of benchmark sepsis-screening tools, including the Systemic Inflammatory Response Syndrome, Sequential Organ Failure Assessment (SOFA), qSOFA, Modified Early Warning Score, and National Early Warning Score. METHODS: We used retrospective electronic health record data from adult patients who presented to 49 urban community hospital emergency departments during a 22-month period (N=2,759,529). We used the Rhee clinical surveillance criteria as our standard definition of sepsis and as the primary target for developing our model. The data were randomly split into training and test cohorts to derive and then evaluate the model. A feature selection process was carried out in 3 stages: first, we reviewed existing models for sepsis screening; second, we consulted with local subject matter experts; and third, we used a supervised machine learning called gradient boosting. Key metrics of performance included alert rate, area under the receiver operating characteristic curve, sensitivity, specificity, and precision. Performance was assessed at 1, 3, 6, 12, and 24 hours after an index time. RESULTS: The RoS score was the most discriminant screening tool at all time thresholds (area under the receiver operating characteristic curve 0.93 to 0.97). Compared with the next most discriminant benchmark (Sequential Organ Failure Assessment), RoS was significantly more sensitive (67.7% versus 49.2% at 1 hour and 84.6% versus 80.4% at 24 hours) and precise (27.6% versus 12.2% at 1 hour and 28.8% versus 11.4% at 24 hours). The sensitivity of qSOFA was relatively low (3.7% at 1 hour and 23.5% at 24 hours). CONCLUSION: In this retrospective study, RoS was more timely and discriminant than benchmark screening tools, including those recommend by the Sepsis-3 Task Force. Further study is needed to validate the RoS score at independent sites.


Subject(s)
Machine Learning , Sepsis/diagnosis , Aged , Early Diagnosis , Female , Hospitals, Urban , Humans , Lactic Acid/metabolism , Male , Middle Aged , Organ Dysfunction Scores , Retrospective Studies , Sensitivity and Specificity , Severity of Illness Index
18.
G3 (Bethesda) ; 8(11): 3433-3446, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30158319

ABSTRACT

The formation and recall of long-term memory (LTM) requires neuron activity-induced gene expression. Transcriptome analysis has been used to identify genes that have altered expression after memory acquisition, however, we still have an incomplete picture of the transcriptional changes that are required for LTM formation. The complex spatial and temporal dynamics of memory formation creates significant challenges in defining memory-relevant gene expression changes. The Drosophila mushroom body (MB) is a signaling hub in the insect brain that integrates sensory information to form memories across several different experimental memory paradigms. Here, we performed transcriptome analysis in the MB at two time points after the acquisition of LTM: 1 hr and 24 hr. The MB transcriptome was compared to biologically paired whole head (WH) transcriptomes. In both, we identified more transcript level changes at 1 hr after memory acquisition (WH = 322, MB = 302) than at 24 hr (WH = 23, MB = 20). WH samples showed downregulation of developmental genes and upregulation of sensory response genes. In contrast, MB samples showed vastly different changes in transcripts involved in biological processes that are specifically related to LTM. MB-downregulated genes were highly enriched for metabolic function. MB-upregulated genes were highly enriched for known learning and memory processes, including calcium-mediated neurotransmitter release and cAMP signaling. The neuron activity inducible genes Hr38 and sr were also specifically induced in the MB. These results highlight the importance of sampling time and cell type in capturing biologically relevant transcript level changes involved in learning and memory. Our data suggests that MB cells transiently upregulate known memory-related pathways after memory acquisition and provides a critical frame of reference for further investigation into the role of MB-specific gene regulation in memory.


Subject(s)
Drosophila melanogaster/physiology , Learning/physiology , Mushroom Bodies/physiology , Sexual Behavior, Animal/physiology , Animals , Female , Gene Expression Profiling , Male
19.
Crit Care Med ; 46(6): e481-e488, 2018 06.
Article in English | MEDLINE | ID: mdl-29419557

ABSTRACT

OBJECTIVES: Risk adjustment algorithms for ICU mortality are necessary for measuring and improving ICU performance. Existing risk adjustment algorithms are not widely adopted. Key barriers to adoption include licensing and implementation costs as well as labor costs associated with human-intensive data collection. Widespread adoption of electronic health records makes automated risk adjustment feasible. Using modern machine learning methods and open source tools, we developed and evaluated a retrospective risk adjustment algorithm for in-hospital mortality among ICU patients. The Risk of Inpatient Death score can be fully automated and is reliant upon data elements that are generated in the course of usual hospital processes. SETTING: One hundred thirty-one ICUs in 53 hospitals operated by Tenet Healthcare. PATIENTS: A cohort of 237,173 ICU patients discharged between January 2014 and December 2016. DESIGN: The data were randomly split into training (36 hospitals), and validation (17 hospitals) data sets. Feature selection and model training were carried out using the training set while the discrimination, calibration, and accuracy of the model were assessed in the validation data set. MEASUREMENTS AND MAIN RESULTS: Model discrimination was evaluated based on the area under receiver operating characteristic curve; accuracy and calibration were assessed via adjusted Brier scores and visual analysis of calibration curves. Seventeen features, including a mix of clinical and administrative data elements, were retained in the final model. The Risk of Inpatient Death score demonstrated excellent discrimination (area under receiver operating characteristic curve = 0.94) and calibration (adjusted Brier score = 52.8%) in the validation dataset; these results compare favorably to the published performance statistics for the most commonly used mortality risk adjustment algorithms. CONCLUSIONS: Low adoption of ICU mortality risk adjustment algorithms impedes progress toward increasing the value of the healthcare delivered in ICUs. The Risk of Inpatient Death score has many attractive attributes that address the key barriers to adoption of ICU risk adjustment algorithms and performs comparably to existing human-intensive algorithms. Automated risk adjustment algorithms have the potential to obviate known barriers to adoption such as cost-prohibitive licensing fees and significant direct labor costs. Further evaluation is needed to ensure that the level of performance observed in this study could be achieved at independent sites.


Subject(s)
Intensive Care Units/statistics & numerical data , Unsupervised Machine Learning , Algorithms , Female , Hospital Mortality , Humans , Male , Middle Aged , Models, Statistical , Risk Adjustment/methods
20.
PLoS One ; 13(1): e0190850, 2018.
Article in English | MEDLINE | ID: mdl-29329326

ABSTRACT

To date, IL-17A antibodies remain the only therapeutic approach to correct the abnormal activation of the IL-17A/IL-17R signaling complex. Why is it that despite the remarkable success of IL-17 antibodies, there is no small molecule antagonist of IL-17A in the clinic? Here we offer a unique approach to address this question. In order to understand the interaction of IL-17A with its receptor, we combined peptide discovery using phage display with HDX, crystallography, and functional assays to map and characterize hot regions that contribute to most of the energetics of the IL-17A/IL-17R interaction. These functional maps are proposed to serve as a guide to aid in the development of small molecules that bind to IL-17A and block its interaction with IL-17RA.


Subject(s)
Coliphages/metabolism , Interleukin-17/metabolism , Peptides/metabolism , Receptors, Interleukin-17/metabolism , Crystallography, X-Ray , Enzyme-Linked Immunosorbent Assay , HT29 Cells , Humans , Interleukin-17/chemistry , Models, Molecular , Receptors, Interleukin-17/chemistry , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...