Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 295(52): 18436-18448, 2020 12 25.
Article in English | MEDLINE | ID: mdl-33127646

ABSTRACT

Reliable, specific polyclonal and monoclonal antibodies are important tools in research and medicine. However, the discovery of antibodies against their targets in their native forms is difficult. Here, we present a novel method for discovery of antibodies against membrane proteins in their native configuration in mammalian cells. The method involves the co-expression of an antibody library in a population of mammalian cells that express the target polypeptide within a natural membrane environment on the cell surface. Cells that secrete a single-chain fragment variable (scFv) that binds to the target membrane protein thereby become self-labeled, enabling enrichment and isolation by magnetic sorting and FRET-based flow sorting. Library sizes of up to 109 variants can be screened, thus allowing campaigns of naïve scFv libraries to be selected against membrane protein antigens in a Chinese hamster ovary cell system. We validate this method by screening a synthetic naïve human scFv library against Chinese hamster ovary cells expressing the oncogenic target epithelial cell adhesion molecule and identify a panel of three novel binders to this membrane protein, one with a dissociation constant (KD ) as low as 0.8 nm We further demonstrate that the identified antibodies have utility for killing epithelial cell adhesion molecule-positive cells when used as a targeting domain on chimeric antigen receptor T cells. Thus, we provide a new tool for identifying novel antibodies that act against membrane proteins, which could catalyze the discovery of new candidates for antibody-based therapies.


Subject(s)
Antibodies, Monoclonal/isolation & purification , Epithelial Cell Adhesion Molecule/immunology , Membrane Proteins/immunology , Receptors, Chimeric Antigen/immunology , Single-Chain Antibodies/immunology , Animals , Cricetinae , Cricetulus , Gene Library , Humans , Jurkat Cells , Protein Binding
2.
Protein Eng Des Sel ; 29(11): 531-540, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27578884

ABSTRACT

Fungal ribotoxins that block protein synthesis can be useful warheads in the context of a targeted immunotoxin. α-Sarcin is a small (17 kDa) fungal ribonuclease produced by Aspergillus giganteus that functions by catalytically cleaving a single phosphodiester bond in the sarcin-ricin loop of the large ribosomal subunit, thus making the ribosome unrecognisable to elongation factors and leading to inhibition of protein synthesis. Peptide mapping using an ex vivo human T cell assay determined that α-sarcin contained two T cell epitopes; one in the N-terminal 20 amino acids and the other in the C-terminal 20 amino acids. Various mutations were tested individually within each epitope and then in combination to isolate deimmunised α-sarcin variants that had the desired properties of silencing T cell epitopes and retention of the ability to inhibit protein synthesis (equivalent to wild-type, WT α-sarcin). A deimmunised variant (D9T/Q142T) demonstrated a complete lack of T cell activation in in vitro whole protein human T cell assays using peripheral blood mononuclear cells from donors with diverse HLA allotypes. Generation of an immunotoxin by fusion of the D9T/Q142T variant to a single-chain Fv targeting Her2 demonstrated potent cell killing equivalent to a fusion protein comprising the WT α-sarcin. These results represent the first fungal ribotoxin to be deimmunised with the potential to construct a new generation of deimmunised immunotoxin therapeutics.

3.
MAbs ; 8(2): 253-63, 2016.
Article in English | MEDLINE | ID: mdl-26821574

ABSTRACT

The immunogenicity of clinically administered antibodies has clinical implications for the patients receiving them, ranging from mild consequences, such as increased clearance of the drug from the circulation, to life-threatening effects. The emergence of methods to engineer variable regions resulting in the generation of humanised and fully human antibodies as therapeutics has reduced the potential for adverse immunogenicity. However, due to differences in sequence referred to as allotypic variation, antibody constant regions are not homogeneous within the human population, even within sub-classes of the same immunoglobulin isotype. For therapeutically administered antibodies, the potential exists for an immune response from the patient to the antibody if the allotype of patient and antibody do not match. Allotypic distribution in the human population varies within and across ethnic groups making the choice of allotype for a therapeutic antibody difficult. This study investigated the potential of human IgG1 allotypes to stimulate responses in human CD4(+) T cells from donors matched for homologous and heterologous IgG1 allotypes. Allotypic variants of the therapeutic monoclonal antibody trastuzumab were administered to genetically defined allotypic matched and mismatched donor T cells. No significant responses were observed in the mismatched T cells. To investigate the lack of T-cell responses in relation to mismatched allotypes, HLA-DR agretopes were identified via MHC associated peptide proteomics (MAPPs). As expected, many HLA-DR restricted peptides were presented. However, there were no peptides presented from the sequence regions containing the allotypic variations. Taken together, the results from the T-cell assay and MAPPs assay indicate that the allotypic differences in human IgG1 do not represent a significant risk for induction of immunogenicity.


Subject(s)
Blood Donors , CD4-Positive T-Lymphocytes/immunology , HLA-DR Antigens/immunology , Immunoglobulin G/immunology , Immunoglobulin Gm Allotypes/immunology , Female , Humans
4.
MAbs ; 8(1): 1-9, 2016.
Article in English | MEDLINE | ID: mdl-26716992

ABSTRACT

An important step in drug development is the assignment of an International Nonproprietary Name (INN) by the World Health Organization (WHO) that provides healthcare professionals with a unique and universally available designated name to identify each pharmaceutical substance. Monoclonal antibody INNs comprise a -mab suffix preceded by a substem indicating the antibody type, e.g., chimeric (-xi-), humanized (-zu-), or human (-u-). The WHO publishes INN definitions that specify how new monoclonal antibody therapeutics are categorized and adapts the definitions to new technologies. However, rapid progress in antibody technologies has blurred the boundaries between existing antibody categories and created a burgeoning array of new antibody formats. Thus, revising the INN system for antibodies is akin to aiming for a rapidly moving target. The WHO recently revised INN definitions for antibodies now to be based on amino acid sequence identity. These new definitions, however, are critically flawed as they are ambiguous and go against decades of scientific literature. A key concern is the imposition of an arbitrary threshold for identity against human germline antibody variable region sequences. This leads to inconsistent classification of somatically mutated human antibodies, humanized antibodies as well as antibodies derived from semi-synthetic/synthetic libraries and transgenic animals. Such sequence-based classification implies clear functional distinction between categories (e.g., immunogenicity). However, there is no scientific evidence to support this. Dialog between the WHO INN Expert Group and key stakeholders is needed to develop a new INN system for antibodies and to avoid confusion and miscommunication between researchers and clinicians prescribing antibodies.


Subject(s)
Antibodies , Animals , Humans , Terminology as Topic
5.
BioDrugs ; 24(1): 1-8, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20055528

ABSTRACT

Most protein therapeutics have the potential to induce undesirable immune responses in patients. Many patients develop anti-therapeutic antibodies, which can affect the safety and efficacy of the therapeutic protein, particularly if the response is neutralizing. There are a variety of factors that influence the immunogenicity of protein therapeutics and, in particular, the presence of B- and T-cell epitopes is considered to be of importance. In silico tools to identify the location of both B- and T-cell epitopes and to assess the potential for immunogenicity have been developed, and such tools provide an alternative to more complex in vitro or in vivo immunogenicity assays. This article reviews computational epitope prediction methods and also the use of manually curated databases containing experimentally derived epitope data. However, due to the complexities of the molecular interactions involved in epitope recognition by the immune system, the heterogeneity of key proteins in human populations and the adaptive nature of the immune response, in silico methods have not yet achieved a level of accuracy that enables them to be used as stand-alone tools for predicting clinical immunogenicity. Computational methods, particularly with regard to T-cell epitopes, only consider a limited number of events in the process of epitope formation and therefore routinely over-predict the number of epitopes within a molecule. Epitope databases such as the Immune Epitope Database (IEDB) and the proprietary T Cell Epitope Database (TCED) have reached a size and level of organization that increases their utility; however, they are not exhaustive. These methods have greatest utility as an adjunct to in vitro assays where they can be used either to reduce the amount and complexity of the in vitro screening, or they can be used as tools to analyze the sequence of the identified epitope in order to locate amino acids critical for its properties.


Subject(s)
Computational Biology , Proteins/immunology , Proteins/therapeutic use , Animals , Computer Simulation , Databases, Genetic , Epitopes, T-Lymphocyte/immunology , Humans , Reproducibility of Results
6.
Methods Mol Biol ; 525: 405-23, xiv, 2009.
Article in English | MEDLINE | ID: mdl-19252848

ABSTRACT

Immunogenicity is a major limitation to therapy with certain monoclonal antibodies and proteins. A major driver for immunogenicity is the presence of human T-cell epitopes within the protein sequence which can activate helper T-cells resulting in the sustained production of antibodies and neutralization of the therapeutic effect. Deimmunization is a new technology for location and removal of T-cell epitopes through the combined use of immunological and molecular biology techniques. In the case of deimmunization of antibodies, mutations to remove T-cell epitopes can generally be introduced without significantly reducing the binding affinity of the antibody. Typically, "deimmunized" antibodies are created with human constant regions and by expression of genes encoding these antibodies in mammalian cells. This chapter details a method for creation of a deimmunized antibody for production in mammalian cells.


Subject(s)
Antibodies, Monoclonal/immunology , Immunization , Molecular Biology/methods , Cell Proliferation , Cloning, Molecular , DNA, Complementary/biosynthesis , Epitope Mapping , Epitopes, T-Lymphocyte/immunology , Humans , Immunoglobulin Constant Regions/genetics , Polymerase Chain Reaction , RNA, Messenger/isolation & purification , Sequence Analysis, DNA , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Transfection
7.
J Interferon Cytokine Res ; 24(9): 560-72, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15450132

ABSTRACT

Interferon-alpha (IFN-alpha), in conjunction with ribavirin, is the current standard for the treatment of chronic hepatitis C virus (HCV) infection. This treatment requires frequent dosing, with a significant risk of the development of anti-IFN-alpha neutralizing antibodies that correlates with lack of efficacy or relapse. We have developed an IFN-alpha linked to the Fc region of human IgG1 for improved half-life and less frequent dosing. We have also identified, using a human T cell proliferation assay, three regions of IFN-alpha2b that are potentially immunogenic, and a variant containing a total of six mutations within these regions was made. This variant was made as a fusion to Fc either with or without a flexible linker between the fusion partners. Both configurations of the variant were less active than native IFN-alpha alone, although the variant containing the flexible linker had in vitro antiviral activity within the range of other modified IFN-alphas currently in clinical use. Peptides spanning the modified regions were tested in T cell proliferation assays and found to be less immunogenic than native controls when using peripheral blood mononuclear cells (PBMCs) from both healthy individuals and HCV-infected patients who had been treated previously with IFN-alpha2b.


Subject(s)
Antiviral Agents/chemistry , Hepatitis C, Chronic/drug therapy , Immunoglobulin Fc Fragments/genetics , Immunoglobulin G/genetics , Interferon-alpha/genetics , Amino Acid Sequence , Antiviral Agents/therapeutic use , Cell Line , Epitopes, T-Lymphocyte/analysis , Hepacivirus/drug effects , Hepacivirus/immunology , Hepatitis C, Chronic/immunology , Humans , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin Fragments/immunology , Immunoglobulin G/immunology , Interferon alpha-2 , Interferon-alpha/chemistry , Interferon-alpha/therapeutic use , Molecular Sequence Data , Peptides/genetics , Point Mutation , Recombinant Fusion Proteins/immunology , Recombinant Proteins
8.
J Gen Virol ; 84(Pt 3): 591-602, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12604810

ABSTRACT

The approximately 150 amino acid C-terminal tail of the gp41 transmembrane glycoprotein of human immunodeficiency virus type 1 (HIV-1) is generally thought to be located inside the virion. However, we show here that both monoclonal IgG and polyclonal epitope-purified IgG specific for the (746)ERDRD(750) epitope that lies within the C-terminal tail neutralized infectious virus. IgG was mapped to the C-terminal tail by its failure to neutralize tail-deleted virus, and by sequencing of antibody-escape mutants. The fact that antibody does not cross lipid membranes, and infectious virus is by definition intact, suggested that ERDRD was exposed on the surface of the virion. This was confirmed by reacting virus and IgG, separating virus and unbound IgG by centrifugation, and showing that virus was neutralized to essentially the same extent as virus that had been in constant contact with antibody. Epitope exposure on virions was independent of temperature and therefore constitutive. Monoclonal antibodies specific to epitopes PDRPEG and IEEE, upstream of ERDRD, also bound to virions, suggesting that they too were located externally. Protease digestion destroyed the ERDRD and PDRPEG epitopes, consistent with their proposed external location. Altogether these data are consistent with part of the C-terminal tail of gp41 being exposed on the outside of the virion. Possible models of the structure of the gp41 tail, taking these observations into account, are discussed.


Subject(s)
HIV Envelope Protein gp41/immunology , HIV-1/immunology , Amino Acid Sequence , Antibodies, Viral/immunology , Cell Line , Endopeptidases , Epitope Mapping , Epitopes/analysis , Epitopes/immunology , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/genetics , HIV-1/metabolism , Humans , Immunoglobulin G/immunology , Molecular Sequence Data , Neutralization Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...