Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Spectrosc ; 77(2): 151-159, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36138571

ABSTRACT

Lithium isotopic ratios have wide ranging applications as chemical signatures, including improved understanding of geochemical processes and battery development. Measurement of isotope ratios using optical spectroscopies would provide an alternative to traditional mass spectrometric methods, which are expensive and often limited to a chemical laboratory. Raman spectra of 7Li2CO3, 6Li2CO3, 7LiOH*H2O, and 6LiOH*H2O have been measured to determine the effect of lithium isotope substitution on the Raman molecular vibrations. Thirteen peaks were observed in the spectrum of lithium carbonate, with discernable isotopic shifts occurring in eleven of the 13 vibrations, two of which have not been previously reported in the literature. The spectrum of lithium hydroxide monohydrate contained nine peaks, with discernable isotopic shifts occurring in eight of the nine vibrations, four of which have not been previously reported in the literature. The Raman spectral data reported here for lithium carbonate and lithium hydroxide monohydrate are in agreement with the previously reported works in the literature, in which the Raman active modes of these molecules were first identified and assigned. However, due to the stability and resolution of the detection system used in this work, isotopic shifts with a magnitude less than one wavenumber have been identified. Principal component regression was used to evaluate the sensitivity to isotopic content of small Raman peak shifts in Li2CO3 and indicates differences greater than 2 atom% could be reliably determined. These measurements add to the body of work on lithium isotope Raman spectroscopy for these two compounds and increases the number of Raman bands which could be used for lithium isotope content analysis.

2.
Adv Sci (Weinh) ; 9(16): e2106032, 2022 05.
Article in English | MEDLINE | ID: mdl-35393776

ABSTRACT

A major challenge in the pursuit of higher-energy-density lithium batteries for carbon-neutral-mobility is electrolyte compatibility with a lithium metal electrode. This study demonstrates the robust and stable nature of a closo-borate based gel polymer electrolyte (GPE), which enables outstanding electrochemical stability and capacity retention upon extensive cycling. The GPE developed herein has an ionic conductivity of 7.3 × 10-4  S cm-2 at room temperature and stability over a wide temperature range from -35 to 80 °C with a high lithium transference number ( tLi+$t_{{\rm{Li}}}^ + $ = 0.51). Multinuclear nuclear magnetic resonance and Fourier transform infrared are used to understand the solvation environment and interaction between the GPE components. Density functional theory calculations are leveraged to gain additional insight into the coordination environment and support spectroscopic interpretations. The GPE is also established to be a suitable electrolyte for extended cycling with four different active electrode materials when paired with a lithium metal electrode. The GPE can also be incorporated into a flexible battery that is capable of being cut and still functional. The incorporation of a closo-borate into a gel polymer matrix represents a new direction for enhancing the electrochemical and physical properties of this class of materials.


Subject(s)
Borates , Lithium , Electrolytes , Lithium/chemistry , Polymers , Temperature
3.
Appl Spectrosc ; 73(2): 163-170, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30345795

ABSTRACT

This work reports an investigation on the feasibility of using a photomultiplier tube (PMT) to follow the time evolution of self-absorption of copper resonance transitions at 324.7 nm and 327.4 nm. The plasma was obtained by focusing a Nd:YAG laser, operated at 1064 nm, on a series of aluminum alloy standard disks containing different copper concentrations. The results described have been obtained at different times and with different set-ups. These set-ups consisted of a Paschen-Runge polychromator, a LIBS 2000 spectrometer, and a spectrometer equipped with both an intensified charge-coupled device (ICCD) and PMT. Both PMT signals and time-resolved spectra were obtained and the ratio of the two Cu resonant lines was calculated, compared, and discussed. By selecting different delay times and integration gates of the PMT signals, the self-absorption effect of the Cu resonant lines was found to be changing, implying that, by careful selection of the integration window of PMT signals, the self-absorption may be minimized, thus improving the calibration linearity of the technique.

4.
Anal Chem ; 87(4): 2321-7, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25599250

ABSTRACT

Standard dilution analysis (SDA) is a novel calibration method that may be applied to most instrumental techniques that will accept liquid samples and are capable of monitoring two wavelengths simultaneously. It combines the traditional methods of standard additions and internal standards. Therefore, it simultaneously corrects for matrix effects and for fluctuations due to changes in sample size, orientation, or instrumental parameters. SDA requires only 200 s per sample with inductively coupled plasma optical emission spectrometry (ICP OES). Neither the preparation of a series of standard solutions nor the construction of a universal calibration graph is required. The analysis is performed by combining two solutions in a single container: the first containing 50% sample and 50% standard mixture; the second containing 50% sample and 50% solvent. Data are collected in real time as the first solution is diluted by the second one. The results are used to prepare a plot of the analyte-to-internal standard signal ratio on the y-axis versus the inverse of the internal standard concentration on the x-axis. The analyte concentration in the sample is determined from the ratio of the slope and intercept of that plot. The method has been applied to the determination of FD&C dye Blue No. 1 in mouthwash by molecular absorption spectrometry and to the determination of eight metals in mouthwash, wine, cola, nitric acid, and water by ICP OES. Both the accuracy and precision for SDA are better than those observed for the external calibration, standard additions, and internal standard methods using ICP OES.

SELECTION OF CITATIONS
SEARCH DETAIL
...