Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Environ Res ; 218: 114962, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36460072

ABSTRACT

Extraction and chromatographic techniques for analyzing pharmaceutically active compounds necessitate large quantities of organic solvents, resulting in a high volume of hazardous waste. The concept of green solvents focuses on protecting the environment by reducing or even eliminating the use of toxic solvents. The main objective of this critical review article is to build a framework for choosing green solvents for antibiotic analyses. The article briefly discusses the chemical properties of ciprofloxacin, sulfamethoxazole, tetracycline, and trimethoprim, and the current state of methodologies for their analyses in water and wastewater. It evaluates the greenness of solvents used for antibiotic analyses and includes insights on the comparison between conventional and green solvents for the analyses. An economic and environmental health and safety analysis combined with a Conductor-like Screening Model for Real Solvent (COSMO-RS) molecular simulation technique for predicting extraction efficiency was used in the evaluation. Methyl acetate and propylene carbonate tied for the greenest solvents from an environmental and economic perspective, whereas the COSMO-RS approach suggests dimethyl sulfoxide (DMSO) as the most suitable candidate. Although DMSO ranked third environmentally and economically, after methyl acetate and propylene carbonate, it would be an ideal replacement of hazardous solvents if it could be manufactured at a lower cost. DMSO showed the highest extraction capacity, as it can interact with antibiotics through hydrophobic interaction and hydrogen bonding. This article can be used as a green solvent selection guide for developing sustainable processes for antibiotic analyses.


Subject(s)
Anti-Bacterial Agents , Dimethyl Sulfoxide , Solvents/chemistry , Environmental Health
2.
Chemosphere ; 299: 134426, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35351480

ABSTRACT

The use of biochar to recover nitrogen and phosphorus from wastewater especially source-separated human urine is attractive from both economic and environmental standpoints. The widespread use of pharmaceuticals has raised concerns as they are not fully metabolized and ended up in human urine. The objective of this study is to examine adsorption of antibiotics (azithromycin, ciprofloxacin, sulfamethoxazole, trimethoprim, and tetracycline) and nutrients (ammonium and phosphate) in source-separated human urine by biochar and subsequent desorption. Batch adsorption experiments were conducted using biochar prepared from oak wood (OW) and paper mill sludge (PMS) to elucidate the effects of adsorption time, pH, and adsorbent dose. The desorption of adsorbed nutrients and antibiotics was also investigated. While the nutrient adsorption was more favorable by the PMS biochar, antibiotic adsorption was more prolific by the OW biochar. Hydrogen bonding and π-π interaction were identified as potential adsorption mechanisms. Experimental results agree with the Freundlich isotherm and pseudo-second order models (except the OW biochar for the kinetics). The findings suggest that biochar can adsorb both nutrients (43.30-266.67 mg g-1) and antibiotics (246.70-389.0 µg g-1) simultaneously. Lower solution pH (<5) was better for antibiotic adsorption, while higher solution pH (≥5) favored nutrient recovery. Also, desorption of the antibiotics (maximum of 92.6% for trimethoprim) was observed and might arise in the environment with the applications of biochar for nutrient recovery from human urine and subsequently for soil quality improvement. The findings serve as a foundation for future research on adsorption-based methods for separating nutrients and antibiotics in aqueous solutions, particularly urine.


Subject(s)
Anti-Bacterial Agents , Water Pollutants, Chemical , Adsorption , Charcoal , Humans , Kinetics , Nutrients , Sewage , Trimethoprim , Water Pollutants, Chemical/analysis
3.
Sci Total Environ ; 745: 140697, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-32758738

ABSTRACT

The extent of prescription and illicit drug abuse in geographically isolated rural and micropolitan communities in the intermountain western United States (US) has not been well tracked. The goal of this pilot study was to accurately measure drug dose consumption rates (DCR) between two select populations, normalize the data and compare the DCRs to similar communities. To learn about patterns of drug abuse between the two disparate communities, we used the emergent field of wastewater-based epidemiology (WBE). A rapid, quantitative and systematic process for the determination of multiple classes of prescribed and illicit drugs was applied to influent wastewater samples. Influent samples were collected over the course of three months (April to June 2019) at two wastewater treatment plants representing a small urban and a rural community. Collection of sewage influent included 24-h composite samples and the use of polar organic chemical integrative samplers (POCIS), time-weighted samplers. Using the results from the composite sampling data, DCRs per 1000 population could be calculated from the concentration data and the use of excretion correction factors. The following 18 compounds: amphetamine, methamphetamine, MDA, MDMA, morphine, 6-acetylmorphine, methadone, EDDP, codeine, benzoylecgonine, hydrocodone, hydromorphone, oxycodone, noroxycodone, ketamine, fluoxetine, tramadol, and ritalinic acid; represent a subset of the targeted analytes that were consistently measured at detectable concentration levels, and present at both sites. Following normalization of the drug measurements to influent flow rates and per capita, the small urban community demonstrated greater collective excretion rates (CER) than the rural community, with the exceptions of amphetamine and methamphetamine.


Subject(s)
Substance-Related Disorders/epidemiology , Water Pollutants, Chemical/analysis , Humans , Pilot Projects , Substance Abuse Detection , United States , Wastewater/analysis , Wastewater-Based Epidemiological Monitoring
4.
Water (Basel) ; 11(6): 1-1125, 2019.
Article in English | MEDLINE | ID: mdl-31275623

ABSTRACT

The Oregon Department of Environmental Quality (ODEQ) uses Total Maximum Daily Load (TMDL) calculations, and the associated regulatory process, to manage harmful cyanobacterial blooms (CyanoHABs) attributable to non-point source (NPS) pollution. TMDLs are based on response (lagging) indicators (e.g., measurable quantities of NPS (nutrients: nitrogen {N} and phosphorus {P}), and/or sediment), and highlight the negative outcomes (symptoms) of impaired water quality. These response indicators belatedly address water quality issues, if the cause is impaired riparian functions. Riparian functions assist in decreasing the impacts of droughts and floods (through sequestration of nutrients and excess sediment), allow water to remain on the land surface, improve aquatic habitats, improve water quality, and provide a focus for monitoring and adaptive management. To manage water quality, the focus must be on the drivers (leading indicators) of the causative mechanisms, such as loss of ecological functions. Success in NPS pollution control, and maintaining healthy aquatic habitats, often depends on land management/land use approaches, which facilitate the natural recovery of stream and wetland riparian functions. Focusing on the drivers of ecosystem functions (e.g., vegetation, hydrology, soil, and landform), instead of individual mandated response indicators, using the proper functioning condition (PFC) approach, as a best management practice (BMP), in conjunction with other tools and management strategies, can lead to pro-active policies and approaches, which support positive change in an ecosystem or watershed, and in water quality improvement.

5.
Environ Toxicol Chem ; 37(2): 336-344, 2018 02.
Article in English | MEDLINE | ID: mdl-28940243

ABSTRACT

Provisional molecular weights and chemical formulas were assigned to 4 significant previously unidentified contaminants present during active fish kills in the Red River region of Oklahoma. The provisional identifications of these contaminants were determined using high-resolution liquid chromatography-time-of-flight mass spectrometry (LC-TOFMS), LC-Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICRMS), and LC-ion trap mass spectrometry (LC-ITMS). Environmental water samples were extracted using a solid-phase extraction (SPE) method, and sediment samples were extracted using a modified sonication liquid extraction method. During screening of the samples, 2 major unknown chromatographic peaks were detected at m/z 624.3 and m/z 639.3. The peak at m/z 639.3 was firmly identified, through the use of an authentic standard, as a porphyrin, specifically chlorin-e6-trimethyl ester, with m/z 639.31735 (M + H)+ and molecular formula C37 H43 N4 O6 . The other major peak, at m/z 624.3 (M + H)+ , was identified as an amide-containing porphyrin. It was discovered that the amide compound was an artifact created during the SPE process by reaction of ammonium hydroxide at 1 of 3 potential reaction sites on chlorin-e6-trimethyl ester. Other unique nontargeted chemicals were also detected and the importance of their identification is discussed. Environ Toxicol Chem 2018;37:336-344. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Subject(s)
Fishes/physiology , Rivers/chemistry , Water Pollutants, Chemical/analysis , Animals , Chlorophyllides , Chromatography, Liquid , Geography , Geologic Sediments/chemistry , Oklahoma , Porphyrins/chemistry , Porphyrins/toxicity , Tandem Mass Spectrometry
6.
Anal Bioanal Chem ; 407(21): 6481-92, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26077747

ABSTRACT

The emphasis of this research project was to develop and optimize a solid-phase extraction method and high-performance liquid chromatography-electrospray ionization-mass spectrometry method, such that a linkage between the detection of endocrine-active pharmaceuticals (EAPs) in the aquatic environment and subsequent effects on fish populations could eventually be studied. Four EAPs were studied: tamoxifen (TAM), exemestane (EXE), letrozole (LET), anastrozole (ANA); and three TAM metabolites: 4-hydroxytamoxifen, e/z endoxifen, and n-desmethyl tamoxifen. In aqueous matrices, the use of isotopically labeled standards for the EAPs allowed for the generation of good recoveries, greater than 80 %, and low relative standard deviations (% RSDs) (3 to 27 %). TAM metabolites had lower recoveries in the spiked water matrices: 35 to 93 % in waste/source water compared to 58 to 110 % in DI water. The precision in DI water was acceptable ranging from 8 to 38 % RSD. However, the precision in real environmental wastewaters could be poor, ranging from 15 to 120 % RSD, dependent upon unique matrix effects. In plasma, the overall recoveries of the EAPs were acceptable: 88 to 110 %, with %RSDs of 6 to 18 % (Table 3). The spiked recoveries of the TAM metabolites from plasma were good, ranging from 77 to 120 %, with %RSDs ranging from 27 to 32 %. Two of the TAM metabolites, 4-hydroxytamoxifen and n-desmethyl tamoxifen, were confirmed in most of the environmental aqueous samples. The discovery of TAM metabolites demonstrates that the source of the TAM metabolites, TAM, is constant, introducing a pseudo-persistence of this chemical into the environment.


Subject(s)
Endocrine Disruptors/toxicity , Water Pollutants, Chemical/toxicity , Animals , Chromatography, Liquid , Fishes , Limit of Detection , Tandem Mass Spectrometry
7.
Anal Chem ; 84(15): 6454-62, 2012 Aug 07.
Article in English | MEDLINE | ID: mdl-22804728

ABSTRACT

Nanoparticle (NP) determination has recently gained considerable interest since a growing number of engineered NPs are being used in commercial products. As a result, their potential to enter the environment and biological systems is increasing. In this study, we report on the development of a hyphenated analytical technique for the detection and characterization of metal-containing NPs, i.e., their metal mass fraction, size, and number concentration. Hydrodynamic chromatography (HDC), suitable for sizing NPs within the range of 5 to 300 nm, was coupled online to inductively coupled plasma mass spectrometry (ICPMS), providing for an extremely selective and sensitive analytical tool for the detection of NPs. However, a serious drawback when operating the ICPMS in its conventional mode is that it does not provide data regarding NP number concentrations and, thus, any information about the metal mass fraction of individual NPs. To address this limitation, we developed single particle (SP) ICPMS coupled online to HDC as an analytical approach suitable for simultaneously determining NP size, NP number concentration, and NP metal content. Gold (Au) NPs of various sizes were used as the model system. To achieve such characterization metrics, three calibrations were required and used to convert ICPMS signal spikes into NPs injected, NP retention time on the HDC column to NP size, and ions detected per signal spike or per NP to metal content in each NP. Two calibration experiments were required in order to make all three calibrations. Also, contour plots were constructed in order to provide for a convenient and most informative viewing of this data. An example of this novel analytical approach was demonstrated for the analysis of Au NPs that had been spiked into drinking water at the ng Au L(-1) level. The described technique gave limits of detection for 60 nm Au NPs of approximately 2.2 ng Au L(-1) or expressed in terms of NP number concentrations of 600 Au NPs mL(-1). These were obtained while the 60 nm NPs exhibited a retention time of 771 s at a mobile phase flow rate of 1 mL min(-1).

8.
Sci Total Environ ; 430: 237-45, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22684090

ABSTRACT

Emerging contaminants (ECs) (e.g., pharmaceuticals, illicit drugs, personal care products) have been detected in waters across the United States. The objective of this study was to evaluate point sources of ECs along the Colorado River, from the headwaters in Colorado to the Gulf of California. At selected locations in the Colorado River Basin (sites in Colorado, Utah, Nevada, Arizona, and California), waste stream tributaries and receiving surface waters were sampled using either grab sampling or polar organic chemical integrative samplers (POCIS). The grab samples were extracted using solid-phase cartridge extraction (SPE), and the POCIS sorbents were transferred into empty SPEs and eluted with methanol. All extracts were prepared for, and analyzed by, liquid chromatography-electrospray-ion trap mass spectrometry (LC-ESI-ITMS). Log D(OW) values were calculated for all ECs in the study and compared to the empirical data collected. POCIS extracts were screened for the presence of estrogenic chemicals using the yeast estrogen screen (YES) assay. Extracts from the 2008 POCIS deployment in the Las Vegas Wash showed the second highest estrogenicity response. In the grab samples, azithromycin (an antibiotic) was detected in all but one urban waste stream, with concentrations ranging from 30ng/L to 2800ng/L. Concentration levels of azithromycin, methamphetamine and pseudoephedrine showed temporal variation from the Tucson WWTP. Those ECs that were detected in the main surface water channels (those that are diverted for urban use and irrigation along the Colorado River) were in the region of the limit-of-detection (e.g., 10ng/L), but most were below detection limits.


Subject(s)
Illicit Drugs/analysis , Pharmaceutical Preparations/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Chromatography, Liquid , Environmental Monitoring , Saccharomyces cerevisiae/drug effects , Seasons , Solid Phase Extraction , Southwestern United States , Spectrometry, Mass, Electrospray Ionization
9.
Chemosphere ; 88(5): 605-11, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22464858

ABSTRACT

Treated wastewater effluent from Las Vegas, Nevada and surrounding communities' flow through Las Vegas Wash (LVW) into the Lake Mead National Recreational Area at Las Vegas Bay (LVB). Lake sediment is a likely sink for many hydrophobic synthetic organic compounds (SOCs); however, partitioning between the sediment and the overlying water could result in the sediment acting as a secondary contaminant source. Locating the chemical plumes may be important to understanding possible chemical stressors to aquatic organisms. Passive sampling devices (SPMDs and POCIS) were suspended in LVB at depths of 3.0, 4.7, and 6.7 (lake bottom) meters in June of 2008 to determine the vertical distribution of SOCs in the water column. A custom sediment probe was used to also bury the samplers in the sediment at depths of 0-10, 10-20, and 20-30cm. The greatest number of detections in samplers buried in the sediment was at the 0-10cm depth. Concentrations of many hydrophobic SOCs were twice as high at the sediment-water interface than in the mid and upper water column. Many SOCs related to wastewater effluents, including fragrances, insect repellants, sun block agents, and phosphate flame retardants, were found at highest concentrations in the middle and upper water column. There was evidence to suggest that the water infiltrated into the sediment had a different chemical composition than the rest of the water column and could be a potential risk exposure to bottom-dwelling aquatic organisms.


Subject(s)
Geologic Sediments/chemistry , Lakes/chemistry , Organic Chemicals/analysis , Water Pollutants, Chemical/analysis , Membranes, Artificial , Nevada , Organic Chemicals/isolation & purification , Permeability , Water Pollutants, Chemical/isolation & purification
10.
J Agric Food Chem ; 58(22): 11568-73, 2010 Nov 24.
Article in English | MEDLINE | ID: mdl-20964347

ABSTRACT

Studies have shown the detection of emerging contaminants (ECs), of which pharmaceuticals are a subset, in surface waters across the United States. The objective of this study was to develop methods, and apply them, to evaluate the potential for food chain transfer when EC-containing waters are used for crop irrigation. Greenhouse experiments were performed in which select food crops were irrigated with water spiked with three antibiotics. Field experiments, at two different sites, were conducted. Select crops were irrigated with wastewater effluent known to contain ECs, EC-free well water, and Colorado River water containing trace-level ECs. The results of the greenhouse studies show the potential for uptake of one or more of the antibiotics evaluated, albeit at very low levels. In those food crops watered with wastewater effluent, only an industrial flavoring agent, N,N'-dimethylphenethylamine (DMPEA), was consistently found. None of the evaluated contaminants were found in crops irrigated with Colorado River water.


Subject(s)
Anti-Bacterial Agents/analysis , Chromatography, Liquid/methods , Crops, Agricultural/chemistry , Mass Spectrometry/methods , Water Pollutants, Chemical/analysis , Agricultural Irrigation , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/metabolism , Chemical Fractionation , Crops, Agricultural/metabolism , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/metabolism
11.
Chemosphere ; 75(1): 70-7, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19121838

ABSTRACT

Information is limited regarding sources, distribution, environmental behavior, and fate of prescribed and illicit drugs. Wastewater treatment plant (WWTP) effluents can be one of the sources of pharmaceutical and personal care products (PPCP) into streams, rivers and lakes. The objective of this study was to determine the contamination profiles and mass loadings of urobilin (a chemical marker of human waste), macrolide antibiotics (azithromycin, clarithromycin, roxithromycin), and two drugs of abuse (methamphetamine and ecstasy), from a small (<19 mega liters day(-1), equivalent to <5 million gallons per day) wastewater treatment plant in southwestern Kentucky. The concentrations of azithromycin, clarithromycin, methamphetamine and ecstasy in wastewater samples varied widely, ranging from non-detects to 300 ng L(-1). Among the macrolide antibiotics analyzed, azithromycin was consistently detected in influent and effluent samples. In general, influent samples contained relatively higher concentrations of the analytes than the effluents. Based on the daily flow rates and an average concentration of 17.5 ng L(-1) in the effluent, the estimated discharge of azithromycin was 200 mg day(-1) (range 63-400 mg day(-1)). Removal efficiency of the detected analytes from this WWTP were in the following order: urobilin>methamphetamine>azithromycin with percentages of removal of 99.9%, 54.5% and 47%, respectively, indicating that the azithromycin and methamphetamine are relatively more recalcitrant than others and have potential for entering receiving waters.


Subject(s)
Anti-Bacterial Agents/analysis , Illicit Drugs/analysis , Macrolides/analysis , Sewage/analysis , Water Pollutants, Chemical/analysis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Chromatography, Liquid , Environmental Monitoring , Illicit Drugs/isolation & purification , Industrial Waste , Macrolides/chemistry , Macrolides/isolation & purification , Sewage/chemistry , Solid Phase Extraction , Spectrometry, Mass, Electrospray Ionization , Urobilin/analysis , Urobilin/isolation & purification , Waste Disposal, Fluid
12.
Environ Toxicol Chem ; 23(7): 1640-8, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15230316

ABSTRACT

Increasingly it is being realized that a holistic hazard assessment of complex environmental contaminant mixtures requires data on the concentrations of hydrophilic organic contaminants including new generation pesticides, pharmaceuticals, personal care products, and many chemicals associated with household, industrial, and agricultural wastes. To address this issue, we developed a passive in situ sampling device (the polar organic chemical integrative sampler [POCIS]) that integratively concentrates trace levels of complex mixtures of hydrophilic environmental contaminants, enables the determination of their time-weighted average water concentrations, and provides a method of estimating the potential exposure of aquatic organisms to the complex mixture of waterborne contaminants. Using a prototype sampler, linear uptake of selected herbicides and pharmaceuticals with log K(ow)s < 4.0 was observed for up to 56 d. Estimation of the ambient water concentrations of chemicals of interest is achieved by using appropriate uptake models and determination of POCIS sampling rates for appropriate exposure conditions. Use of POCIS in field validation studies targeting the herbicide diuron in the United Kingdom resulted in the detection of the chemical at estimated concentrations of 190 to 600 ng/L. These values are in agreement with reported levels found in traditional grab samples taken concurrently.


Subject(s)
Environmental Monitoring/methods , Organic Chemicals/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/instrumentation , Geography , Marine Biology , Risk Assessment , Specimen Handling , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...