Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 948: 174149, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38909821

ABSTRACT

Ecosystem services link the status of biodiversity and its functioning to societal goods and benefits contributing to human wellbeing. As such, they can play a key role in preserving the environment and managing natural resources and ecosystems to conserve nature's contributions to people. Identification of the main threats acting on the natural environment, and how these may impact its capacity to supply ecosystem services, is fundamental to the maintenance of these services. To that end, we present a novel approach based on a cumulative impacts assessment that 1) covers all relevant human activities and their pressures, 2) links impacts to the biotic groups that make up biodiversity and 3) provides an estimation of the Service Supply Potential based on the functioning of these biotic groups. Key proxy metrics to estimate this Service Supply Potential were identified from a literature review and quantified using a food web model (Ecopath with Ecosim). In addition to this quantitative information, the assessment of the capacity to supply ecosystem services was supplemented with expert judgement-based information to reflect the societal preferences that drive the allocation of human capital and turn these services into societal goods and benefits. As a proof of concept, the method was applied to the North Sea ecosystem. Results showed that, overall, the capacity of the North Sea to supply Cultural ecosystem services was most threatened, with an average potential decline of 50 % compared to an undisturbed situation. This was followed by the Provisioning ecosystem services with 46 % and the Regulation & Maintenance with 38 %. The main anthropogenic threats (excluding climate change) to the North Sea capacity to supply ecosystem services come primarily from fishing contributing to 51 % of the overall threat. Of the remaining 18 sectoral activities another 23 % was contributed by mining, non-renewable energy, tourism, and agriculture.

2.
Sci Total Environ ; 784: 146847, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34088040

ABSTRACT

Currently most Cumulative Impacts Assessments (CIAs) are risk-based approaches that assess the potential impact of human activities and their pressures on the ecosystem thereby compromising the achievement of policy objectives. While some of these CIAs apply actual data (usually spatial distributions) they often have to rely on categorical scores based on expert judgement if they actually assess impact which is often expressed as a relative measure that is difficult to interpret in absolute terms. Here we present a first step-wise approach to conduct a fully quantitative CIA based on the selection and subsequent application of the best information available. This approach systematically disentangles risk into its exposure and effect components that can be quantified using known ecological information, e.g. spatial distribution of pressures or species, pressure-state relationships and population dynamics models with appropriate parametrisation, resulting in well-defined assessment endpoints that are meaningful and can be easily communicated to the recipients of advice. This approach requires that underlying assumptions and methodological considerations are made explicit and translated into a measure of confidence. This transparency helps to identify the possible data-handling or methodological decisions and shows the resulting improvement through its confidence assessment of the applied information and hence the resulting accuracy of the CIA. To illustrate this approach, we applied it in a North Sea CIA focussing on two sectors, i.e. fisheries and offshore windfarms, and how they impact the ecosystem and its components, i.e. seabirds, seabed habitats and marine mammals through various pressures. The results provide a "proof of concept" for this generic approach as well as rigorous definitions of several of the concepts often used as part of risk-based approaches, e.g. exposure, sensitivity, vulnerability, and how these can be estimated using actual data. As such this widens the scope for increasingly more quantitative CIAs using the best information available.


Subject(s)
Ecosystem , Fisheries , Animals , Conservation of Natural Resources , Human Activities , Humans , North Sea
3.
Sci Total Environ ; 654: 694-704, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30448660

ABSTRACT

This study provides an integrated perspective to ecosystem based management (EBM) by considering a diverse array of societal goals, i.e. sustainable food supply, clean energy and a healthy marine ecosystem, and a selection of management measures to achieve them. The primary aim of this exercise is to provide guidance for (more) integrated EBM in the North Sea based on an evaluation of the effectiveness of those management measures in contributing to the conservation of marine biodiversity. A secondary aim is to identify the requirements of the knowledge base to guide such future EBM initiatives. Starting from the societal goals we performed a scoping exercise to identify a "focal social-ecological system" which is a subset of the full social-ecological system but considered adequate to guide EBM towards the achievement of those societal goals. A semi-quantitative risk assessment including all the relevant human activities, their pressures and the impacted ecosystem components was then applied to identify the main threats to the North Sea biodiversity and evaluate the effectiveness of the management measures to mitigate those threats. This exercise revealed the need for such risk-based approaches in providing a more integrated perspective but also the trade-off between being comprehensive but qualitative versus quantitative but limited in terms of the "focal" part of the SES that can be covered. The findings in this paper provide direction to the (further) development of EBM and its knowledge base that should ultimately allow an integrated perspective while maintaining its capacity to deliver the accuracy and detail needed for decision-making.

4.
Integr Environ Assess Manag ; 12(4): 632-42, 2016 Oct.
Article in English | MEDLINE | ID: mdl-26572833

ABSTRACT

With a foreseen increase in maritime activities, and driven by new policies and conventions aiming at sustainable management of the marine ecosystem, spatial management at sea is of growing importance. Spatial management should ensure that the collective pressures caused by anthropogenic activities on the marine ecosystem are kept within acceptable levels. A multitude of approaches to environmental assessment are available to provide insight for sustainable management, and there is a need for a harmonized and integrated environmental assessment approach that can be used for different purposes and variable levels of detail. This article first provides an overview of the main types of environmental assessments: "environmental impact assessment" (EIA), "strategic environmental assessment" (SEA), "cumulative effect assessment" (CEA), and "environmental (or ecological) risk assessment" (ERA). Addressing the need for a conceptual "umbrella" for the fragmented approaches, a generic framework for environmental assessment is proposed: cumulative effects of offshore activities (CUMULEO). CUMULEO builds on the principle that activities cause pressures that may lead to adverse effects on the ecosystem. Basic elements and variables are defined that can be used consistently throughout sequential decision-making levels and diverse methodological implementations. This enables environmental assessment to start at a high strategic level (i.e., plan and/or program level), resulting in early environmental awareness and subsequently more informed, efficient, and focused project-level assessments, which has clear benefits for both industry and government. Its main strengths are simplicity, transparency, flexibility (allowing the use of both qualitative and quantitative data), and visualization, making it a powerful framework to support discussions with experts, stakeholders, and policymakers. Integr Environ Assess Manag 2016;12:632-642. © 2015 SETAC.


Subject(s)
Ecosystem , Environmental Monitoring/methods , Conservation of Natural Resources/methods , Ecology , Human Activities , Humans , Risk Assessment/methods
5.
Integr Environ Assess Manag ; 8(2): 231-41, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21853522

ABSTRACT

Oil spills, for example those due to tanker collisions and groundings or platform accidents, can have huge adverse impacts on marine systems. The impact of an oil spill at sea depends on a number of factors, such as spill volume, type of oil spilled, weather conditions, and proximity to environmentally, economically, or socially sensitive areas. Oil spilled at sea threatens marine organisms, whole ecosystems, and economic resources in the immediate vicinity, such as fisheries, aquaculture, recreation, and tourism. Adequate response to any oil spill to minimize damage is therefore of great importance. The common response to an oil spill is to remove all visible oil from the water surface, either mechanically or by using chemicals to disperse the oil into the water column to biodegrade. This is not always the most suitable response to an oil spill, as the chemical application itself may also have adverse effects, or no response may be needed. In this article we discuss advantages and disadvantages of using chemical treatments to reduce the impact of an oil spill in relation to the conditions of the spill. The main characteristics of chemical treatment agents are discussed and presented within the context of a basic decision support scheme.


Subject(s)
Environmental Restoration and Remediation/methods , Organic Chemicals/chemistry , Petroleum Pollution/prevention & control , Environmental Monitoring , Environmental Restoration and Remediation/adverse effects , Organic Chemicals/analysis , Water Pollution, Chemical/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...