Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 130(44): 14615-24, 2008 Nov 05.
Article in English | MEDLINE | ID: mdl-18839947

ABSTRACT

We recently reported that the photoisomerization of molecular motors used as chiral dopants in a cholesteric liquid crystal film induces a rotational reorganization which can be observed by optical microscopy and produces the motion of microscopic objects placed on top of the film (Feringa, B. L.; et al. Nature 2006, 440, 163; J. Am. Chem. Soc. 2006, 128, 14397). The mechanism underlying the mesoscopic manifestation of the molecular process was not fully understood, and here we present a joint theoretical and experimental investigation, which provides a detailed insight into the mechanism of texture rotation. This description allows us to identify the interplay between the chemical structure of the chiral dopant and the material properties of the liquid crystal host, and to quantify their role in the observed dynamic phenomenon. We have found that a crucial role is played by the hybrid anchoring of the liquid crystal, with the director parallel to the substrate and perpendicular to the interface with air; in this configuration an almost unperturbed cholesteric helix, with its axis normal to the substrate, is present in most of the film, with strong deformations only close to the free interface. The texture rotation observed in the experiment reflects the rotation of the director during the unwinding of the cholesteric helix, produced by the change in shape of the chiral dopant under photoisomerization. The rotational reorganization is controlled by the photochemical process, via the coupling between the chirality of the dopant and the elastic properties of the liquid crystal host.

2.
J Am Chem Soc ; 130(13): 4541-52, 2008 Apr 02.
Article in English | MEDLINE | ID: mdl-18335940

ABSTRACT

Control over the preferred helical sense of a poly(n-hexyl isocyanate) (PHIC) by using a single light-driven molecular motor, covalently attached at the polymer's terminus, has been accomplished in solution via a combination of photochemical and thermal isomerizations. Here, we report that after redesigning the photochromic unit to a chiroptical molecular switch, of which the two states are thermally stable but photochemically bistable, the chiral induction to the polymer's backbone is significantly improved and the handedness of the helical polymer is addressable by irradiation with two different wavelengths of light. Moreover, we show that the chiral information is transmitted, via the macromolecular level of the polyisocyanate, to the supramolecular level of a lyotropic cholesteric liquid crystalline phase consisting of these stiff, rodlike polymers. This allows the magnitude and sign of the supramolecular helical pitch of the liquid crystal film to be fully controlled by light.


Subject(s)
Macromolecular Substances/radiation effects , Nitriles/radiation effects , Toluene/radiation effects , Ultraviolet Rays , Crystallization , Macromolecular Substances/chemistry , Molecular Structure , Nitriles/chemistry , Photochemistry , Solutions/chemistry , Solutions/radiation effects , Stereoisomerism , Temperature , Toluene/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...