Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biotechnol ; 66(3): 402-423, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37270443

ABSTRACT

The demand for astaxanthin has been increasing for many health applications ranging from pharmaceuticals, food, cosmetics, and aquaculture due to its bioactive properties. Haematococcus pluvialis is widely recognized as the microalgae species with the highest natural accumulation of astaxanthin, which has made it a valuable source for industrial production. Astaxanthin produced by other sources such as chemical synthesis or fermentation are often produced in the cis configuration, which has been shown to have lower bioactivity. Additionally, some sources of astaxanthin, such as shrimp, may denature or degrade when exposed to high temperatures, which can result in a loss of bioactivity. Producing natural astaxanthin through the cultivation of H. pluvialis is presently a demanding and time-consuming task, which incurs high expenses and restricts the cost-effective industrial production of this valuable substance. The production of astaxanthin occurs through two distinct pathways, namely the cytosolic mevalonate pathway and the chloroplast methylerythritol phosphate (MEP) pathway. The latest advancements in enhancing product quality and extracting techniques at a reasonable cost are emphasized in this review. The comparative of specific extraction processes of H. pluvialis biological astaxanthin production that may be applied to large-scale industries were assessed. The article covers a contemporary approach to optimizing microalgae culture for increased astaxanthin content, as well as obtaining preliminary data on the sustainability of astaxanthin production and astaxanthin marketing information.


Subject(s)
Chlorophyceae , Microalgae , Xanthophylls/metabolism , Chlorophyceae/chemistry , Chlorophyceae/metabolism , Microalgae/metabolism
2.
Sci Rep ; 13(1): 4705, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36949096

ABSTRACT

In this work, a series of innovative metal oxide impregnated waste-derived activated carbons (MO/AC) was synthesized and used to purify the simulated biohydrogen based on the concept of CO2 removal from the gas stream. Effects of metal oxide types (CaO, SrO and MgO) and contents of the best metal oxides on the morphology and the CO2 adsorption capacity from the biohydrogen were investigated. It was found that both metal oxide types and contents played an important role on the adsorbent textural property and surface chemistry as well as the CO2 adsorption capacity. Among all synthesized adsorbent, the MgO-impregnated AC with 12 wt.% MgO (12MgO/AC) exhibited the highest CO2 adsorption capacity of around 94.02 mg/g. With this successive adsorbent, the biohydrogen with the H2 purity higher than 90 mol% can be achieved from the gas stream with 50 mol% CO2 for the first 2 min of adsorption period in a fixed bed reactor. The mechanism of CO2 adsorption occurred via a combined process of the physisorption and chemisorption. Besides, the 12MgO/AC exhibited a high recyclability after several repetitive adsorption/desorption cycles.

4.
Molecules ; 27(9)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35566010

ABSTRACT

At temperatures below the critical temperature, discontinuities in the isotherms are one critical issue in the design and construction of separation units, affecting the level of confidence for a prediction of vapor-liquid equilibriums and phase transitions. In this work, we study the molecular mechanisms of fluids that involve the vapor-liquid phase transition in bulk and confinement, utilizing grand canonical (GCE) and meso-canonical (MCE) ensembles of the Monte Carlo simulation. Different geometries of the mesopores, including slit, cylindrical, and spherical, were studied. During phase transitions, condensation/evaporation hysteretic isotherms can be detected by GCE simulation, whereas employing MCE simulation allows us to investigate van der Waals (vdW) loop with a vapor spinodal point, intermediate states, and a liquid spinodal point in the isotherms. Depending on the system, the size of the simulation box, and the MCE method, we are able to identify three distinct groups of vdW-type isotherms for the first time: (1) a smooth S-shaped loop, (2) a stepwise S-shaped loop, and (3) a stepwise S-shaped loop with just a vertical segment. The first isotherm type is noticed in the bulk and pores having small box sizes, in which vapor and liquid phases are close and not clearly identified. The second and the third types occurred in the bulk, cylindrical, and slit mesopores with sufficiently large spaces, where vapor and liquid phases are distinctly separated. Results from our studies provide an insight analysis into vapor-liquid phase transitions, elucidating the effect of the confinement of fluid behaviors in a visual manner.

5.
Sci Rep ; 12(1): 6250, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35428781

ABSTRACT

A series of activated carbons (ACs) derived from spent disposable wooden chopsticks was prepared via steam activation and used to separate carbon dioxide (CO2) from a CO2/hydrogen (H2) mixed gas at atmospheric pressure. A factorial design was employed to investigate the effects of the activation temperature and time as well as their interactions on the production yield of ACs and their CO2 adsorption capacity. The activation temperature exhibited a much higher impact on both the production yield and the CO2 adsorption capacity of ACs than the activation time. The interaction of both parameters did not significantly affect the yield of ACs, but did affect the CO2 adsorption capacity. The optimal preparation condition provided ACs with a desirable yield of around 23.18% and a CO2 adsorption capacity of 85.19 mg/g at 25 °C and 1 atm and consumed the total energy of 225.28 MJ/kg AC or 116.4 MJ/g-mol CO2. A H2 purity of greater than 96.8 mol% was achieved from a mixed gas with low CO2 concentration (< 20 mol%) during the first 3 min of adsorption and likewise around 90 mol% from a mixed gas with a high CO2 concentration (> 30 mol%) during the first 2 min. The CO2 adsorption on the as-prepared ACs proceeded dominantly via multilayer physical adsorption and was affected by both the surface area and micropore volume of the ACs. The adsorption capacity was diminished by around 18% after six adsorption/desorption cycles. The regeneration of the as-prepared chopstick-derived ACs can be easily performed via heating at a low temperature and ambient pressure, suggesting their potential application in the temperature swing adsorption process.

6.
Environ Res ; 206: 112620, 2022 04 15.
Article in English | MEDLINE | ID: mdl-34968431

ABSTRACT

Global demand for plastic materials has severely harm the environment and marine sea life. Therefore, bioplastics have emerged as an environmentally friendly alternative due to sustainability, minimal carbon footprint, less toxicity and high degradability. This review highlights the sustainable and environmentally friendly approach towards bioplastic production by utilizing microalgae as a feed source in several ways. First, the microalgae biomass obtained through the biorefinery approach can be processed into PHA under certain nutrient limitations. Additionally, microalgae biomass can act as potential filler and reinforcement towards the enhancement of bioplastic either blending with conventional bioplastic or synthetic polymer. The downstream processing of microalgae via suitable extraction and pre-treatment of bioactive compounds such as lipids and cellulose are found to be promising for the production of bioplastics. Moving on, the intermediate processing of bioplastic via lactic acid synthesized from microalgae has favoured the microwave-assisted synthesis of polylactic acid due to cost efficiency, minimum solvent usage, low energy consumption, and fast rate of reaction. Moreover, the reliability and effectiveness of microalgae-based bioplastics are further evaluated in terms of techno-economic analysis and degradation mechanism. Future improvement and recommendations are listed towards proper genetic modification of algae strains, large-scale biofilm technology, low-cost cultivation medium, and novel avocado seed-microalgae bioplastic blend.


Subject(s)
Microalgae , Biofuels , Biomass , Plastics , Polymers , Reproducibility of Results
7.
Biotechnol Appl Biochem ; 67(1): 105-116, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31524961

ABSTRACT

In very high gravity (VHG) ethanol fermentation, the rheological properties of native cassava significantly influence heat and mass transfer, mixing energy, and, thus, the yield of all steps. This study investigated the effect of cassava varieties and their harvest times on starch liquefaction, saccharification, and fermentation. The genotype correlation of the starch properties was revealed for the most suitable cassava varieties. First, the starch content, amylose content, total reducing sugar from liquefaction and saccharification, pasting properties, and ethanol yields of six cassava varieties (Huay Bong 60, Hanatee, Kasetsart 50, Pirun 1, Pirun 2, and Rayong 11) at 6-, 9-, 12-, and 15-month harvest times were evaluated. The amylose content increased significantly from the 6th to the 12th month but slightly decreased at the 15th month. It was observed that the starch content contributed to a more substantial influence on the change in peak viscosity than on the amylose content. Ethanol fermentation using Saccharomyces cerevisiae TISTR5606 showed that the Rayong 11 variety at the 15-month harvest time provided the highest ethanol concentration of 104.7 ± 4.1 g L-1 and an ethanol yield of 0.4 ± 0.1 g ethanol g-1 reducing sugar, which corresponded to 74.5% of the theoretical yield.


Subject(s)
Ethanol/metabolism , Hypergravity , Manihot/metabolism , Ethanol/chemistry , Fermentation , Genotype , Manihot/genetics , Plant Roots , Rheology , Saccharomyces cerevisiae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...