Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-425424

ABSTRACT

RationaleThe global public health is in serious crisis due to emergence of SARS-CoV-2 virus. Studies are ongoing to reveal the genomic variants of the virus circulating in various parts of the world. However, data generated from low- and middle-income countries are scarce due to resource limitation. This study was focused to perform whole genome sequencing of 151 SARS-CoV-2 isolates from COVID-19 positive Bangladeshi patients. The goal of this study was to identify the genomic variants among the SARS-CoV-2 virus isolates in Bangladesh, to determine the molecular epidemiology and to develop a relationship between host clinical trait with the virus genomic variants. MethodSuspected patients were tested for COVID-19 using one step commercial qPCR kit for SARS-CoV-2 Virus. Viral RNA was extracted from positive patients, converted to cDNA which was amplified using Ion AmpliSeq SARS-CoV-2 Research Panel. Massive parallel sequencing was carried out using Ion AmpliSeq Library Kit Plus. Assembly of raw data is done by aligning the reads to a pre-defined reference genome (NC_045512.2) while retaining the unique variations of the input raw data by creating a consensus genome. A random forest-based association analysis was carried out to correlate the viral genomic variants with the clinical traits present in the host. ResultAmong the 151 viral isolates, we observed the 413 unique variants. Among these 8 variants occurred in more than 80 % of cases which include 241C to T, 1163A to T, 3037C to T,14408C to T, 23403A to G, 28881G to A, 28882 G to A, and finally the 28883G to C. Phylogenetic analysis revealed a predominance of variants belonging to GR clade, which have a strong geographical presence in Europe, indicating possible introduction of the SARS-CoV-2 virus into Bangladesh through a European channel. However, other possibilities like a route of entry from China cannot be ruled out as viral isolate belonging to L clade with a close relationship to Wuhan reference genome was also detected. We observed a total of 37 genomic variants to be strongly associated with clinical symptoms such as fever, sore throat, overall symptomatic status, etc. (Fishers Exact Test p-value<0.05). The most mention-worthy among those were the 3916CtoT (associated with causing sore throat, p-value 0.0005), the 14408C to T (associated with protection from developing cough, p-value= 0.027), and the 28881G to A, 28882G to A, and 28883G to C variant (associated with causing chest pain, p-value 0.025). ConclusionTo our knowledge, this study is the first large scale phylogenomic studies of SARS-CoV-2 virus circulating in Bangladesh. The observed epidemiological and genomic features may inform future research platform for disease management, vaccine development and epidemiological study.

2.
Article in English | WPRIM (Western Pacific) | ID: wpr-874770

ABSTRACT

Background@#Coronavirus disease 2019 (COVID-19) outbreaks emerged at two universityaffiliated hospitals in Seoul (hospital A) and Uijeongbu City (hospital S) in the metropolitan Seoul area in March 2020. The aim of this study was to investigate epidemiological links between the outbreaks using whole genome sequencing (WGS) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). @*Methods@#Fifteen patients were enrolled in the study, including four non-outbreak (A1–A4) and three outbreak cases (A5–A7) in hospital A and eight cases (S1–S8) in hospital S. Patients' hospital stays, COVID-19 symptoms, and transfer history were reviewed. RNA samples were submitted for WGS and genome-wide single nucleotide variants and phylogenetic relationships were analyzed. @*Results@#The index patient (A5) in hospital A was transferred from hospital S on 26 March.Patients A6 and A7 were the family caregiver and sister, respectively, of the patient who shared a room with A5 for 4 days. Prior to transfer, A5 was at the next bed to S8 in the emergency room on 25 March. Patient S6, a professional caregiver, took care of the patient in the room next to S8's room for 5 days until 22 March and then S5 for another 3 days.WGS revealed that SARS-CoV-2 in A2, A3, and A4 belong to clades V/B.2, S/A, and G/B.1, respectively, whereas that of A5–A7 and S1-S5 are of the V/B.2.1 clade and closely clustered. In particular, SARS-CoV-2 in patients A5 and S5 showed perfect identity. @*Conclusion@#WGS is a useful tool to understand epidemiology of SARS-CoV-2. It is the first study to elucidate the role of patient transfer and caregivers as links of nosocomial outbreaks of COVID-19 in multiple hospitals.

3.
Article in English | WPRIM (Western Pacific) | ID: wpr-762442

ABSTRACT

BACKGROUND: Next-generation sequencing is increasingly used for taxonomic identification of pathogenic bacterial isolates. We evaluated the performance of a newly introduced whole genome-based bacterial identification system, TrueBac ID (ChunLab Inc., Seoul, Korea), using clinical isolates that were not identified by three matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems and 16S rRNA gene sequencing. METHODS: Thirty-six bacterial isolates were selected from a university-affiliated hospital and a commercial clinical laboratory. Species was identified by three MALDI-TOF MS systems: Bruker Biotyper MS (Bruker Daltonics, Billerica, MA, USA), VITEK MS (bioMérieux, Marcy l'Étoile, France), and ASTA MicroIDSys (ASTA Inc., Suwon, Korea). Whole genome sequencing was conducted using the Illumina MiSeq system (Illumina, San Diego, CA, USA), and genome-based identification was performed using the TrueBac ID cloud system (www.truebacid.com). RESULTS: TrueBac ID assigned 94% (34/36) of the isolates to known (N=25) or novel (N=4) species, genomospecies (N=3), or species group (N=2). The remaining two were identified at the genus level. CONCLUSIONS: TrueBac ID successfully identified the majority of isolates that MALDI-TOF MS failed to identify. Genome-based identification can be a useful tool in clinical laboratories, with its superior accuracy and database-driven operations.


Subject(s)
Genes, rRNA , Genome , Mass Spectrometry , Seoul
4.
Article in English | WPRIM (Western Pacific) | ID: wpr-156160

ABSTRACT

The human-associated microbiota is diverse, varies between individuals and body sites, and is important in human health. Microbes in human body play an essential role in immunity, health, and disease. The human microbiome has been studies using the advances of next-generation sequencing and its metagenomic applications. This has allowed investigation of the microbial composition in the human body, and identification of the functional genes expressed by this microbial community. The gut microbes have been found to be the most diverse and constitute the densest cell number in the human microbiota; thus, it has been studied more than other sites. Early results have indicated that the imbalances in gut microbiota are related to numerous disorders, such as inflammatory bowel disease, colorectal cancer, diabetes, and atopy. Clinical therapy involving modulating of the microbiota, such as fecal transplantation, has been applied, and its effects investigated in some diseases. Human microbiome studies form part of human genome projects, and understanding gleaned from studies increase the possibility of various applications including personalized medicine.


Subject(s)
Humans , Cell Count , Colorectal Neoplasms , Human Body , Human Genome Project , Precision Medicine , Inflammatory Bowel Diseases , Metagenome , Metagenomics , Transplants
5.
Genomics & Informatics ; : 102-113, 2013.
Article in English | WPRIM (Western Pacific) | ID: wpr-58527

ABSTRACT

Metagenomics has become one of the indispensable tools in microbial ecology for the last few decades, and a new revolution in metagenomic studies is now about to begin, with the help of recent advances of sequencing techniques. The massive data production and substantial cost reduction in next-generation sequencing have led to the rapid growth of metagenomic research both quantitatively and qualitatively. It is evident that metagenomics will be a standard tool for studying the diversity and function of microbes in the near future, as fingerprinting methods did previously. As the speed of data accumulation is accelerating, bioinformatic tools and associated databases for handling those datasets have become more urgent and necessary. To facilitate the bioinformatics analysis of metagenomic data, we review some recent tools and databases that are used widely in this field and give insights into the current challenges and future of metagenomics from a bioinformatics perspective.


Subject(s)
Computational Biology , Dermatoglyphics , Ecology , Handling, Psychological , High-Throughput Nucleotide Sequencing , Metagenomics
SELECTION OF CITATIONS
SEARCH DETAIL
...