Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 102021 06 01.
Article in English | MEDLINE | ID: mdl-34060471

ABSTRACT

Teeth are present in most clades of vertebrates but have been lost completely several times in actinopterygian fishes and amniotes. Using phenotypic data collected from over 500 genera via micro-computed tomography, we provide the first rigorous assessment of the evolutionary history of dentition across all major lineages of amphibians. We demonstrate that dentition is invariably present in caecilians and salamanders, but teeth have been lost completely more than 20 times in frogs, a much higher occurrence of edentulism than in any other vertebrate group. The repeated loss of teeth in anurans is associated with a specialized diet of small invertebrate prey as well as shortening of the lower jaw, but it is not correlated with a reduction in body size. Frogs provide an unparalleled opportunity for investigating the molecular and developmental mechanisms of convergent tooth loss on a large phylogenetic scale.


Subject(s)
Anura/physiology , Biological Evolution , Jaw/physiology , Tooth/physiology , Adaptation, Physiological , Animals , Anura/anatomy & histology , Diet , Jaw/anatomy & histology , Jaw/diagnostic imaging , Phylogeny , Time Factors , Tooth/anatomy & histology , Tooth/diagnostic imaging , X-Ray Microtomography
2.
Beilstein J Org Chem ; 12: 2731-2738, 2016.
Article in English | MEDLINE | ID: mdl-28144343

ABSTRACT

The contents of the gular glands of the male African reed frog Hyperolius cinnamomeoventris consist of a mixture of aliphatic macrolides and sesquiterpenes. While the known macrolide gephyromantolide A was readily identified, the structure of another major component was suggested to be a tetradecen-13-olide. The synthesis of the two candidate compounds (Z)-5- and (Z)-9-tetradecen-13-olide revealed the former to be the naturally occurring compound. The synthesis used ring-closing metathesis as key step. While the Hoveyda-Grubbs catalyst furnished a broad range of isomeric products, the (Z)-selective Grubbs catalyst lead to pure (Z)-products. Analysis by chiral GC revealed the natural frog compound to be (5Z,13S)-5-tetradecen-13-olide (1). This compound is also present in the secretion of other hyperoliid frogs as well as in femoral glands of male mantellid frogs such as Spinomantis aglavei. The mass spectra of the synthesized macrolides as well as their rearranged isomers obtained during ring-closing metathesis showed that it is possible to assign the location of the double bond in an unsaturated macrolide on the basis of its EI mass spectrum. The occurrence of characteristic ions can be explained by the fragmentation pathway proposed in the article. In contrast, the localization of a double bond in many aliphatic open-chain compounds like alkenes, alcohols or acetates, important structural classes of pheromones, is usually not possible from an EI mass spectrum. In the article, we present the synthesis and for the first time elucidate the structure of macrolides from the frog family Hyperoliidae.

SELECTION OF CITATIONS
SEARCH DETAIL
...