Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 87(14): 9399-9407, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35736506

ABSTRACT

A catalytic asymmetric methylene migration reaction of ene-aldimines directed by chiral counteranions is developed, with the optimal catalyst identified as phenanthryl-substituted (R)-BINOL phosphate. Control experiments and density functional theory computations reveal the importance of the 2-hydroxy group of the ene-aldimine and attractive (e.g., OH···O, CH···O, CH···π, and π···π) interactions for high enantioselectivity (up to 74% ee). The results contribute to the design of asymmetric catalysis for the rearrangement of highly reactive iminium intermediates.


Subject(s)
Catalysis
2.
Org Lett ; 21(13): 4991-4995, 2019 07 05.
Article in English | MEDLINE | ID: mdl-31247769

ABSTRACT

The rearrangement of ene-aldimines is a useful reaction for affording homoallylic amines. Despite their utilities in synthetic chemistry, the rearrangement for accessing homoallylic amines substituted at the 2-position remains elusive. In this study, the Brønsted acid-initiated formal [1,3]-rearrangement of ene-aldimines was developed to synthesize 2,4,4-substituted homoallylic amines that were otherwise inaccessible previously. Our study reveals an intermolecular pathway in which the rearrangement proceeds via a protonation-mediated 2-azaallenium cation.

3.
J Hazard Mater ; 314: 277-285, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27136733

ABSTRACT

Development of cyanide sensor is important as the anion is harmful to human health and the environment. Herein, a new colorimetric and fluorescent probe GSB based on boron dipyrrole-methene (BODIPY) containing salicylaldehyde group for cyanide detection has been reported. GSB undergoes exclusive colorimetric change from orange to colorless and exhibits selective fluorescence turn-on at 504nm upon the addition of cyanide. Other 13 anions give almost no interference under physiological condition. Detection limit of the new cyanide-sensing GSB is 0.88µM, which is below World Health Organization (WHO) recommended level in drinking water. A calculation by density functional theory (DFT) shows suppression of photoinduced electron transfer (PET) mechanism along with the interruption of π-conjugation between salicylaldehyde and BODIPY core by cyanide anion. Cell imaging studies demonstrated that GSB is compatible and capable of sensing cyanide anion in living cells.


Subject(s)
Aldehydes/chemistry , Boron Compounds/chemistry , Colorimetry/instrumentation , Cyanides/chemistry , Fluorescent Dyes , Hep G2 Cells , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...