Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(2): 2912-2920, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38174974

ABSTRACT

Biodegradable polymers and composites are promising candidates for biomedical implants in tissue engineering. However, state-of-the-art composite scaffolds suffer from a strength-toughness dilemma due to poor interfacial adhesion and filler dispersion. In this work, we propose a facile and scalable strategy to fabricate strong and tough biocomposite scaffolds through interfacial toughening. The immiscible biopolymer matrix is compatible by the direct incorporation of a third polymer. Densely entangled polymer chains lead to massive crazes and global shear yields under tension. Weak chemical interaction and high-shear melt processing create nanoscale dispersion of nanofillers within the matrix. The resultant ternary blends and composites exhibit an 11-fold increase in toughness without compromising stiffness and strength. At 70% porosity, three-dimensional (3D)-printed composite scaffolds demonstrate high compressive properties comparable to those of cancellous bones. In vitro cell culture on the scaffolds demonstrates not only good cell viability but also effective osteogenic differentiation of human mesenchymal stem cells. Our findings present a widely applicable strategy to develop high-performance biocomposite materials for tissue regeneration.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Humans , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Osteogenesis , Bone and Bones , Polymers/chemistry , Printing, Three-Dimensional , Porosity
2.
ACS Nano ; 17(3): 2851-2867, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36633150

ABSTRACT

High extracellular matrix stiffness is a prominent feature of malignant tumors associated with poor clinical prognosis. To elucidate mechanistic connections between increased matrix stiffness and tumor progression, a variety of hydrogel scaffolds with dynamic changes in stiffness have been developed. These approaches, however, are not biocompatible at high temperature, strong irradiation, and acidic/basic pH, often lack reversibility (can only stiffen and not soften), and do not allow study on the same cell population longitudinally. In this work, we develop a dynamic 3D magnetic hydrogel whose matrix stiffness can be wirelessly and reversibly stiffened and softened multiple times with different rates of change using an external magnet. With this platform, we found that matrix stiffness increased tumor malignancy including denser cell organization, epithelial-to-mesenchymal transition and hypoxia. More interestingly, these malignant transformations could be halted or reversed with matrix softening (i.e., mechanical rescue), to potentiate drug efficacy attributing to reduced solid stress from matrix and downregulation of cell mechano-transductors including YAP1. We propose that our platform can be used to deepen understanding of the impact of matrix softening on cancer biology, an important but rarely studied phenomenon.


Subject(s)
Hydrogels , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Extracellular Matrix/pathology , Down-Regulation
3.
ACS Appl Mater Interfaces ; 13(19): 23220-23229, 2021 May 19.
Article in English | MEDLINE | ID: mdl-33955218

ABSTRACT

This paper proposes the fabrication process of the first fully 3D-printed ceramic core structures for portable solar desalination devices optimized to tackle water scarcity from an energy and sustainability perspective. Robocasting, a 3D printing technique, is utilized to fabricate a fully ceramic structure of an integrated solar absorber/thermal insulator/water transporter based on the two-layered structure of modified graphene on silica (MG@Silica) and the porous silica structure. Robocasting has demonstrated its flexibility in tailoring structural designs, combining nanopores and microchannels that exhibit uniform water transport delivery and thermal insulation. This portable device can be used immediately to collect fresh drinking water without an additional setup. It possesses a water evaporation rate of 2.4 kg m-2 h-1 with a drinking water production capacity of 0.5 L m-2 h-1. This novel device has shown excellent ion rejection ability, with the collected water meeting the World Health Organization (WHO) drinking water standards.

4.
Nat Mater ; 20(2): 181-187, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33106649

ABSTRACT

Two-dimensional superconductor (2DSC) monolayers with non-centrosymmetry exhibit unconventional Ising pair superconductivity and an enhanced upper critical field beyond the Pauli paramagnetic limit, driving intense research interest. However, they are often susceptible to structural disorder and environmental oxidation, which destroy electronic coherence and provide technical challenges in the creation of artificial van der Waals heterostructures (vdWHs) for devices. Herein, we report a general and scalable synthesis of highly crystalline 2DSC monolayers via a mild electrochemical exfoliation method using flexible organic ammonium cations solvated with neutral solvent molecules as co-intercalants. Using NbSe2 as a model system, we achieved a high yield (>75%) of large-sized single-crystal monolayers up to 300 µm. The as-fabricated, twisted NbSe2 vdWHs demonstrate high stability, good interfacial properties and a critical current that is modulated by magnetic field when one flux quantum fits to an integer number of moiré cells. Additionally, formulated 2DSC inks can be exploited to fabricate wafer-scale 2D superconducting wire arrays and three-dimensional superconducting composites with desirable morphologies.

5.
ACS Appl Mater Interfaces ; 12(25): 28840-28851, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32469199

ABSTRACT

Large-scale liquid exfoliation of two-dimensional materials such as molybdenum disulfide, tungsten disulfide, and graphene for the synthesis of printable inks is still inefficient due to many hours of exfoliation time needed to achieve a highly concentrated dispersion that is useful for printing. Here, we report that soaking the bulk 2D material powders in a variety of solvents (water, ethanol, isopropanol, acetone, methanol, dimethylformamide, N-methyl pyrrolidone, and hexane) briefly as short as 5 min "activates" them to be much more easily exfoliated afterward. The unsoaked powder yielded a negligible concentration of dispersed nanosheets (less than 0.01 mg/mL) even after long hours of sonication, while the powders soaked in water resulted in dispersed nanosheets of 1.21 mg/mL for MoS2 and 1.28 mg/mL for WS2 after 6 and 4 h of sonication, respectively, a more than 100 time increase. For graphene, soaking in methanol for 5 min prior to sonication for 6 h yielded an increase in the dispersed nanosheet concentration to 0.13 mg/mL, a more than 10 time increase in concentration. The enhanced exfoliation is originated not from the intercalated solvent molecules but from the slightly increased d-spacing of the bulk powders during soaking due to the different dielectric environments in the solvents, which assists in the exfoliation afterward. We further fabricated MoS2 and WS2 photodetectors with graphene as electrodes by one-step electrohydrodynamic (EHD) printing using highly concentrated inks (>2 mg/mL) obtained by ultrafast liquid exfoliation, which have light sensitivity down to 0.05 sun. We believe that this ultrafast exfoliation technique combined with the one-step device printing technique enables a big step toward the mass production of functional devices fabricated from solution-processed 2D material inks.

SELECTION OF CITATIONS
SEARCH DETAIL
...