Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolomics ; 12: 38, 2016.
Article in English | MEDLINE | ID: mdl-26848289

ABSTRACT

The quality of rice in terms not only of its nutritional value but also in terms of its aroma and flavour is becoming increasingly important in modern rice breeding where global targets are focused on both yield stability and grain quality. In the present paper we have exploited advanced, multi-platform metabolomics approaches to determine the biochemical differences in 31 rice varieties from a diverse range of genetic backgrounds and origin. All were grown under the specific local conditions for which they have been bred and all aspects of varietal identification and sample purity have been guaranteed by local experts from each country. Metabolomics analyses using 6 platforms have revealed the extent of biochemical differences (and similarities) between the chosen rice genotypes. Comparison of fragrant rice varieties showed a difference in the metabolic profiles of jasmine and basmati varieties. However with no consistent separation of the germplasm class. Storage of grains had a significant effect on the metabolome of both basmati and jasmine rice varieties but changes were different for the two rice types. This shows how metabolic changes may help prove a causal relationship with developing good quality in basmati rice or incurring quality loss in jasmine rice in aged grains. Such metabolomics approaches are leading to hypotheses on the potential links between grain quality attributes, biochemical composition and genotype in the context of breeding for improvement. With this knowledge we shall establish a stronger, evidence-based foundation upon which to build targeted strategies to support breeders in their quest for improved rice varieties.

2.
Food Chem ; 168: 348-55, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25172720

ABSTRACT

The effects of conventional industrial processing steps on global phytochemical composition of broccoli, tomato and carrot purees were investigated by using a range of complementary targeted and untargeted metabolomics approaches including LC-PDA for vitamins, (1)H NMR for polar metabolites, accurate mass LC-QTOF MS for semi-polar metabolites, LC-MRM for oxylipins, and headspace GC-MS for volatile compounds. An initial exploratory experiment indicated that the order of blending and thermal treatments had the highest impact on the phytochemicals in the purees. This blending-heating order effect was investigated in more depth by performing alternate blending-heating sequences in triplicate on the same batches of broccoli, tomato and carrot. For each vegetable and particularly in broccoli, a large proportion of the metabolites detected in the purees was significantly influenced by the blending-heating order, amongst which were potential health-related phytochemicals and flavour compounds like vitamins C and E, carotenoids, flavonoids, glucosinolates and oxylipins. Our metabolomics data indicates that during processing the activity of a series of endogenous plant enzymes, such as lipoxygenases, peroxidases and glycosidases, including myrosinase in broccoli, is key to the final metabolite composition and related quality of the purees.


Subject(s)
Food Handling , Metabolomics , Vegetables/chemistry , Ascorbic Acid/analysis , Brassica/chemistry , Carotenoids/analysis , Chromatography, Liquid , Daucus carota/chemistry , Flavonoids/analysis , Gas Chromatography-Mass Spectrometry , Solanum lycopersicum/chemistry , Mass Spectrometry , Phytochemicals/analysis
3.
Plant Physiol ; 110(4): 1167-1175, 1996 Apr.
Article in English | MEDLINE | ID: mdl-12226250

ABSTRACT

Sucrose:sucrose 1-fructosyltransferase (1-SST), an enzyme involved in fructan biosynthesis, was purified to homogeneity from tubers of Helianthus tuberosus that were harvested in the accumulation phase. Gel filtration under native conditions predicted a molecular mass of about 67 kD. Electrophoresis or gel filtration under denaturing conditions yielded a 27- and a 55-kD fragment. 1-SST preferentially catalyzed the conversion of sucrose into the trisaccharide 1-kestose (GF2). Other reactions catalyzed by 1-SST at a lower rate were self-transfructosylations with GF2 and 1,1-nystose (GF3) as substrates yielding GF3 and 1,1,1-fructosylnystose, respectively, as products. 1-SST also catalyzed the removal of the terminal fructosyl unit from both GF2 and GF3, which resulted in the release of sucrose and GF2, respectively, and free Fru. The purified enzyme did not display [beta]-fructosidase activity. An enzyme mixture of purified 1-SST and fructan:fructan 1-fructosyltransferase, both isolated from tubers, was able to synthesize fructans up to a degree of polymerization of at least 13 with sucrose as a sole substrate.

SELECTION OF CITATIONS
SEARCH DETAIL
...