Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecology ; 100(1): e02566, 2019 01.
Article in English | MEDLINE | ID: mdl-30467837

ABSTRACT

Like many species, movement patterns of southern elephant seals (Mirounga leonina) are being influenced by long-term environmental change. These seals migrate up to 4,000 km from their breeding colonies, foraging for months in a variety of Southern Ocean habitats. Understanding how movement patterns vary with environmental features and how these relationships differ among individuals employing different foraging strategies can provide insight into foraging performance at a population level. We apply new fast-estimation tools to fit mixed effects within a random walk movement model, rapidly inferring among-individual variability in southern elephant seal environment-movement relationships. We found that seals making foraging trips to the sea ice on or near the Antarctic continental shelf consistently reduced speed and directionality (move persistence) with increasing sea-ice coverage but had variable responses to chlorophyll a concentration, whereas seals foraging in the open ocean reduced move persistence in regions where circumpolar deep water shoaled. Given future climate scenarios, open-ocean foragers may encounter more productive habitat but sea-ice foragers may see reduced habitat availability. Our approach is scalable to large telemetry data sets and allows flexible combinations of mixed effects to be evaluated via model selection, thereby illuminating the ecological context of animal movements that underlie habitat usage.


Subject(s)
Chlorophyll A , Seals, Earless , Animals , Antarctic Regions , Ecosystem , Ice Cover
2.
Nature ; 475(7354): 86-90, 2011 Jun 22.
Article in English | MEDLINE | ID: mdl-21697831

ABSTRACT

Pelagic marine predators face unprecedented challenges and uncertain futures. Overexploitation and climate variability impact the abundance and distribution of top predators in ocean ecosystems. Improved understanding of ecological patterns, evolutionary constraints and ecosystem function is critical for preventing extinctions, loss of biodiversity and disruption of ecosystem services. Recent advances in electronic tagging techniques have provided the capacity to observe the movements and long-distance migrations of animals in relation to ocean processes across a range of ecological scales. Tagging of Pacific Predators, a field programme of the Census of Marine Life, deployed 4,306 tags on 23 species in the North Pacific Ocean, resulting in a tracking data set of unprecedented scale and species diversity that covers 265,386 tracking days from 2000 to 2009. Here we report migration pathways, link ocean features to multispecies hotspots and illustrate niche partitioning within and among congener guilds. Our results indicate that the California Current large marine ecosystem and the North Pacific transition zone attract and retain a diverse assemblage of marine vertebrates. Within the California Current large marine ecosystem, several predator guilds seasonally undertake north-south migrations that may be driven by oceanic processes, species-specific thermal tolerances and shifts in prey distributions. We identify critical habitats across multinational boundaries and show that top predators exploit their environment in predictable ways, providing the foundation for spatial management of large marine ecosystems.


Subject(s)
Aquatic Organisms/physiology , Ecosystem , Locomotion/physiology , Predatory Behavior/physiology , Animal Identification Systems , Animal Migration , Animals , Bayes Theorem , Biodiversity , California , Climate , North America , Pacific Ocean , Population Dynamics , Seasons , Species Specificity , Water Movements , Wilderness
SELECTION OF CITATIONS
SEARCH DETAIL
...