Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(12): 19255-19265, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37381344

ABSTRACT

Artificial neural networks (ANN) are a groundbreaking technology massively employed in a plethora of fields. Currently, ANNs are mostly implemented through electronic digital computers, but analog photonic implementations are very interesting mainly because of low power consumption and high bandwidth. We recently demonstrated a photonic neuromorphic computing system based on frequency multiplexing that executes ANNs algorithms as reservoir computing and Extreme Learning Machines. Neuron signals are encoded in the amplitude of the lines of a frequency comb, and neuron interconnections are realized through frequency-domain interference. Here we present an integrated programmable spectral filter designed to manipulate the optical frequency comb in our frequency multiplexing neuromorphic computing platform. The programmable filter controls the attenuation of 16 independent wavelength channels with a 20 GHz spacing. We discuss the design and the results of the chip characterization, and we preliminary demonstrate, through a numerical simulation, that the produced chip is suitable for the envisioned neuromorphic computing application.

2.
iScience ; 25(6): 104377, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35620425

ABSTRACT

Antimony sulfide, Sb2S3, is interesting as the phase-change material for applications requiring high transmission from the visible to telecom wavelengths, with its band gap tunable from 2.2 to 1.6 eV, depending on the amorphous and crystalline phase. Here we present results from an interlaboratory study on the interplay between the structural change and resulting optical contrast during the amorphous-to-crystalline transformation triggered both thermally and optically. By statistical analysis of Raman and ellipsometric spectroscopic data, we have identified two regimes of crystallization, namely 250°C ≤ T < 300°C, resulting in Type-I spherulitic crystallization yielding an optical contrast Δn ∼ 0.4, and 300 ≤ T < 350°C, yielding Type-II crystallization bended spherulitic structure with different dielectric function and optical contrast Δn ∼ 0.2 below 1.5 eV. Based on our findings, applications of on-chip reconfigurable nanophotonic phase modulators and of a reconfigurable high-refractive-index core/phase-change shell nanoantenna are designed and proposed.

SELECTION OF CITATIONS
SEARCH DETAIL
...