Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Micromachines (Basel) ; 14(2)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36838042

ABSTRACT

This thesis describes research to prevent maritime safety accidents by notifying navigational signs when sea fog and haze occur in the marine environment. Artificial intelligence, a camera sensor, an embedded board, and an LED marine lantern were used to conduct the research. A deep learning-based dehaze model was learned by collecting real marine environment and open haze image data sets. By applying this learned model to the original hazy images, we obtained clear dehaze images. Comparing those two images, the concentration level of sea fog was derived into the PSNR and SSIM values. The brightness of the marine lantern was controlled through serial communication with the derived PSNR and SSIM values in a realized sea fog environment. As a result, it was possible to autonomously control the brightness of the marine lantern according to the concentration of sea fog, unlike the current marine lanterns, which adjust their brightness manually. This novel-developed lantern can efficiently utilize power consumption while enhancing its visibility. This method can be used for other fog concentration estimation systems at the embedded board level, so that applicable for local weather expectations, UAM navigation, and autonomous driving for marine ships.

2.
Sensors (Basel) ; 21(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34300429

ABSTRACT

LED (Light-Emitting Diode) presents advantages such as luminescence, reliability, durability compared with conventional lighting. It has been widely applied for life, healthcare, smart farm, industry, and lighting from indoor to the automotive headlamp. However, the LED is vulnerable to thermal damage originated from the high junction temperature, especially in high power applications. Hence, it requires precise qualification on the optical power and the junction temperature from the pilot line to secure reliability. In this study, the photo-thermal sensor is proposed by employing a sheet-type thermocouple composed of photo-absorbent metal film and thermocouple. This sensor aims low-cost qualification in pilot line for high-power luminous devices and optical monitoring of costly luminaire such as automobile LED headlamp. The sensor is designed to detect the increased temperature response of LED hot spots from the transferred thermal power and absorbed optical power. The temperature response of each sheet-type thermocouple is utilized as a signal output of the absorbed optical power and hot spot temperature based on the introduced sensor equation. The proposed thermal sensor is evaluated by comparing the experiment with the measured reference value from the integrating sphere and the attached thermocouple at a junction. The experiment result reveals 3% of the maximum error for the optical power of 645 mW.

3.
Neurochem Int ; 141: 104870, 2020 12.
Article in English | MEDLINE | ID: mdl-33035603

ABSTRACT

Epilepsy is a common chronic neurological disease characterized by recurrent epileptic seizures. A seizure is an uncontrolled electrical activity in the brain that can cause different levels of behavior, emotion, and consciousness. One-third of patients fail to receive sufficient seizure control, even though more than fifty FDA-approved anti-seizure drugs (ASDs) are available. In this study, we attempted small molecule screening to identify potential therapeutic agents for the treatment of seizures using seizure-induced animal models. Through behavioral phenotype-based screening, 4-(2-chloro-4-fluorobenzyl)-3-(2-thienyl)-1,2,4-oxadiazol-5(4H)-one (GM-90432) was identified as a prototype. GM-90432 treatment effectively decreased seizure-like behaviors in zebrafish and mice with chemically induced seizures. These results were consistent with decreased neuronal activity through immunohistochemistry for pERK in zebrafish larvae. Additionally, electroencephalogram (EEG) analysis revealed that GM-90432 decreases seizure-specific EEG events in adult zebrafish. Moreover, we revealed the preferential binding of GM-90432 to voltage-gated Na+ channels using a whole-cell patch clamp technique. Through pharmacokinetic analysis, GM-90432 effectively penetrated the blood-brain barrier and was distributed into the brain. Taken together, we suggest that GM-90432 has the potential to be developed into a new ASD candidate.


Subject(s)
Anticonvulsants/pharmacokinetics , Anticonvulsants/therapeutic use , Oxadiazoles/pharmacokinetics , Oxadiazoles/therapeutic use , Seizures/drug therapy , Animals , Behavior, Animal , Blood-Brain Barrier , Electroencephalography , Immunohistochemistry , Larva , MAP Kinase Signaling System/drug effects , Male , Mass Screening , Mice , Mice, Inbred ICR , Patch-Clamp Techniques , Seizures/psychology , Small Molecule Libraries , Sodium Channels/metabolism , Zebrafish
4.
Opt Express ; 23(15): 18872-87, 2015 Jul 27.
Article in English | MEDLINE | ID: mdl-26367551

ABSTRACT

This paper presents a model of blue laser diode (LD)-based white lighting coupled with a yellow YAG phosphor, for use in the proper design and fabrication of phosphor in automotive headlamps. First, the sample consisted of an LD, collecting lens, and phosphor was prepared that matches the model. The light distribution of the LD and the phosphor were modeled to investigate an effect of the surface topography and phosphor particle properties on the laser-driven white lighting systems by using the commercially available optical design software. Based on the proposed model, the integral spectrum distribution and the color coordinates were discussed.

5.
Appl Opt ; 50(4): 460-7, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21283236

ABSTRACT

We present the phase-locked loop (PLL)-based metrology concept using lensed fibers for on-machine surface topography measurement. The shape of a single-mode fiber at the endface was designed using an ABCD matrix method, and two designed lensed fibers-the ball type and the tapered type-were fabricated, and the performance was evaluated, respectively. As a result, the interferometric fringe was not found in the case of the ball lensed fiber, but the machined surface could be measured by utilization of autofocusing and intensity methods. On the other hand, a very clear Fizeau interferometric fringe was observed in the case of the tapered lensed fiber. Its performance was compared with the results of the capacitance sensor and a commercially available white-light interferometer. We confirmed that PLL-based surface profile measurement using the tapered and ball lensed fibers can be applied for on-machine surface topography measurement applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...