Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Gut Microbes ; 16(1): 2319844, 2024.
Article in English | MEDLINE | ID: mdl-38404132

ABSTRACT

Patients with inflammatory bowel disease (IBD), including ulcerative colitis (UC), show an increased incidence of anxiety and depression; however, the association between UC-associated psychiatric disorders and the gut microbiota is unclear. This study aimed to examine whether gut microbiota from patients with UC can alter colonic gene expression, leading to anxiety- and depression-like behavior in mice receiving fecal microbiota transplantation (FMT). RNA sequencing transcriptome analyses revealed a difference in colonic gene expression between mice receiving FMT from patients with UC (UC-FMT mice) and those receiving FMT from healthy controls (HC-FMT mice). Gene ontology analysis revealed the downregulation of neuropeptide signaling pathways, including neuropeptide Y (NPY) expression, in the colons of UC-FMT mice. The protein levels of NPY also decreased in the colon and plasma of UC-FMT mice compared to those in HC-FMT mice. The oral administration of Enterococcus mundtii (EM), a bacterium isolated from the feces of patients with UC, reduced NPY expression in the colons of mice and induced intestinal inflammation, anxiety, and depression-like behavior. Reduced NPY protein levels were also observed in the plasma and hippocampus of EM-treated mice. Intraperitoneal administration of NPY significantly alleviated anxiety- and depressive-like behaviors induced by EM in mice. Capsular polysaccharide in EM was associated with EM-induced NPY downregulation in the colon. Analysis of Gene Expression Omnibus datasets showed markedly reduced NPY expression in the inflamed colons of patients with UC compared with that in the colons of healthy controls. In summary, EM-induced reduction in the colonic expression of NPY may be associated with a decrease in hippocampal NPY and anxiety- and depression-like behavior in mice.


Subject(s)
Colitis, Ulcerative , Gastrointestinal Microbiome , Neuropeptide Y , Humans , Anxiety , Colitis, Ulcerative/microbiology , Depression , Fecal Microbiota Transplantation , Feces/microbiology , Neuropeptide Y/genetics , Animals , Mice
2.
Sci Rep ; 13(1): 15529, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37726354

ABSTRACT

Antibiotics are increasingly recognized as causing neuropsychiatric side effects including depression and anxiety. Alterations in central serotonin and 5-HT receptor expression are implicated in the pathogenesis of anxiety and depression, which are highly comorbid with gastrointestinal disorders. Nevertheless, it is still unclear how antibiotics can cause anxiety and depression. In this study, oral administration of cefaclor, a second-generation cephalosporin antibiotic, induced anxiety- and depression-like behaviors and colitis with gut microbiota alteration in mice. Cefaclor reduced serotonin levels and fluctuated 5-HT receptor mRNA expressions such as Htr1a, Htr1b, and Htr6 in the hippocampus. Vagotomy attenuated the cefaclor-induced anxiety- and depression-like symptoms, while the cefaclor-induced changes in gut bacteria alteration and colitis were not affected. Fluoxetine attenuated cefaclor-induced anxiety- and depression-like behaviors. Furthermore, fluoxetine decreased cefaclor-resistant Enterobacteriaceae and Enterococcaceae. Taken together, our findings suggest that the use of antibiotics, particularly, cefaclor may cause gut dysbiosis-dependent anxiety and depression through the microbiota-gut-blood-brain and microbiota-gut-vagus nerve-brain pathway. Targeting antibiotics-resistant pathogenic bacteria may be a promising therapeutic strategy for the treatment of anxiety and depression.


Subject(s)
Cefaclor , Colitis , Animals , Mice , Depression/drug therapy , Depression/etiology , Dysbiosis , Fluoxetine , Serotonin , Anti-Bacterial Agents/adverse effects , Vagus Nerve
4.
Eur J Pharmacol ; 953: 175862, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37331682

ABSTRACT

The vagus nerve is a major pathway in the body that is responsible for regulating the activity of the parasympathetic nervous system, which plays an important role in mood disorders including anxiety and depression. Fluoxetine, also known as Prozac, is widely used to treat depression. Nevertheless, there are few studies on the vagus nerve-mediated action of fluoxetine. In this study, we aimed to investigate the vagus nerve-dependent actions of fluoxetine in mice with restraint stress-induced or antibiotics-induced anxiety- and depression-like behaviors. Compared to sham operation, vagotomy alone did not exhibit significant effects on behavioral changes and serotonin-related biomarkers in mice not exposed to stress, antibiotics, or fluoxetine. Oral administration of fluoxetine significantly alleviated anxiety- and depression-like behaviors. However, celiac vagotomy significantly attenuated the anti-depressive effects of fluoxetine. The vagotomy also inhibited the effect of fluoxetine to attenuate restraint stress- or cefaclor-induced reduction in serotonin levels and Htr1a mRNA expression in the hippocampus. These findings suggest that the vagus nerve may regulate the efficacy of fluoxetine for depression.


Subject(s)
Depression , Fluoxetine , Mice , Animals , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , Depression/drug therapy , Depression/metabolism , Serotonin/metabolism , Anxiety/drug therapy , Vagus Nerve , Hippocampus
5.
Int J Mol Sci ; 24(12)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37373227

ABSTRACT

Over the past few decades, the enhanced permeability and retention (EPR) effect of nanomedicine has been a crucial phenomenon in targeted cancer therapy. Specifically, understanding the EPR effect has been a significant aspect of delivering anticancer agents efficiently to targeted tumors. Although the therapeutic effect has been demonstrated in experimental models using mouse xenografts, the clinical translation of the EPR effect of nanomedicine faces several challenges due to dense extracellular matrix (ECM), high interstitial fluid pressure (IFP) levels, and other factors that arise from tumor heterogeneity and complexity. Therefore, understanding the mechanism of the EPR effect of nanomedicine in clinics is essential to overcome the hurdles of the clinical translation of nanomedicine. This paper introduces the basic mechanism of the EPR effect of nanomedicine, the recently discussed challenges of the EPR effect of nanomedicine, and various strategies of recent nanomedicine to overcome the limitations expected from the patients' tumor microenvironments.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Animals , Mice , Nanomedicine/methods , Drug Delivery Systems/methods , Neoplasms/drug therapy , Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Permeability , Tumor Microenvironment
6.
Microbes Infect ; 25(6): 105116, 2023.
Article in English | MEDLINE | ID: mdl-36758891

ABSTRACT

The genus Enterococcus is commonly overpopulated in patients with depression compared to healthy control in the feces. Therefore, we isolated Enterococcus faecalis, Enterococcus durans, Enterococcus gallinarum, Enterococcus faecium, and Enterococcus mundtii from the feces of patients with comorbid inflammatory bowel disease with depression and examined their roles in depression in vivo and in vitro. Of these Enterococci, E. mundtii NK1516 most potently induced NF-κB-activated TNF-α and IL-6 expression in BV2 microglia cells. NK1516 also caused the most potent depression-like behaviors in the absence of sickness behaviors, neuroinflammation, downregulated brain-derived neurotrophic factor (BDNF), and serotonin (5-HT) levels in the hippocampus of mice. Furthermore, E. mundtii NK1516 reduced the mRNA expression of Htr1a in the hippocampus. Its capsular polysaccharide (CP), but not cytoplasmic components, also caused depression-like behaviors and reduced BDNF and serotonin levels in the hippocampus. Conversely, this was not observed with E. mundtii ATCC882, a well-known probiotic, or its CP. Orally gavaged fluorescence isothiocyanate (FITC)-conjugated NK1516 CP was detected in the hippocampus of mice. The NK1516 genome exhibited unique CP biosynthesis-related genes (capD, wbjC, WecB, vioB), unlike that of ATCC882. These findings suggest that E. mundtii may be a risk factor for depression.


Subject(s)
Brain-Derived Neurotrophic Factor , Depression , Enterococcus , Animals , Humans , Mice , Brain-Derived Neurotrophic Factor/genetics , Depression/microbiology , Down-Regulation , Enterococcus/pathogenicity , NF-kappa B/genetics , Serotonin/metabolism
8.
Gastroenterology ; 164(6): 937-952.e13, 2023 05.
Article in English | MEDLINE | ID: mdl-36657529

ABSTRACT

BACKGROUND & AIMS: Tissue fibrosis results from uncontrolled healing responses leading to excessive mesenchymal cell activation and collagen and other extracellular matrix deposition. In the gastrointestinal tract, fibrosis leads to narrowing of the lumen and stricture formation. A drug treatment to prevent fibrosis and strictures in the gastrointestinal tract would be transformational for patient care. We aimed to develop a stricture treatment with the following characteristics and components: a small molecule with strong antifibrotic effects that is delivered locally at the site of the stricture to ensure correct lesional targeting while protecting the systemic circulation, and that is formulated with sustained-release properties to act throughout the wound healing processes. METHODS: A high-throughput drug screening was performed to identify small molecules with antifibrotic properties. Next, we formulated an antifibrotic small molecule for sustained release and tested its antifibrotic potential in 3 animal models of fibrosis. RESULTS: Sulconazole, a US Food and Drug Administration-approved drug for fungal infections, was found to have strong antifibrotic properties. Sulconazole was formulated as sulconazole nanocrystals for sustained release. We found that sulconazole nanocrystals provided superior or equivalent fibrosis prevention with less frequent dosing in mouse models of skin and intestinal tissue fibrosis. In a patient-like swine model of bowel stricture, a single injection of sulconazole nanocrystals prevented stricture formation. CONCLUSIONS: The current data lay the foundation for further studies to improve the management of a range of diseases and conditions characterized by tissue fibrosis.


Subject(s)
Collagen , Extracellular Matrix , Mice , Animals , Swine , Constriction, Pathologic , Delayed-Action Preparations , Extracellular Matrix/pathology , Fibrosis
9.
Nutrients ; 14(14)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35889931

ABSTRACT

A leaky gut is closely connected with systemic inflammation and psychiatric disorder. The rectal injection of 2,4,6-trinitrobenzenesulfonic acid (TNBS) induces gut inflammation and cognitive function in mice. Therefore, we selected Bifidobacterium longum NK219, Lactococcus lactis NK209, and Lactobacillus rhamnosus NK210, which induced claudin-1 expression in TNBS- or lipopolysaccharide (LPS)-stimulated Caco-2 cells, from the fecal bacteria collection of humans and investigated their effects on cognitive function and systemic inflammatory immune response in TNBS-treated mice. The intrarectal injection of TNBS increased cognitive impairment-like behaviors in the novel object recognition and Y-maze tests, TNF-α, IL-1ß, and IL-17 expression in the hippocampus and colon, and LPS level in the blood and feces, while the expression of hippocampal claudin-5 and colonic claudin-1 decreased. Oral administration of NK209, NK210, and NK219 singly or together decreased TNBS-impaired cognitive behaviors, TNF-α and IL-1ß expression, NF-κB+Iba1+ cell and LPS+Iba1+ cell numbers in the hippocampus, and LPS level in the blood and feces, whereas BDNF+NeuN+ cell and claudin-5+ cell numbers and IL-10 expression increased. Furthermore, they suppressed TNBS-induced colon shortening and colonic TNF-α and IL-1ß expression, while colonic IL-10 expression and mucin protein-2+ cell and claudin-1+ cell numbers expression increased. Of these, NK219 most strongly alleviated cognitive impairment and colitis. They additively alleviated cognitive impairment with colitis. Based on these findings, NK209, NK210, NK219, and their combinations may alleviate cognitive impairment with systemic inflammation by suppressing the absorption of gut bacterial products including LPS into the blood through the suppression of gut bacterial LPS production and alleviation of a leaky gut by increasing gut tight junction proteins and mucin-2 expression.


Subject(s)
Cognitive Dysfunction , Colitis , Probiotics , Animals , Caco-2 Cells , Claudin-1 , Claudin-5 , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/therapy , Colitis/chemically induced , Colitis/therapy , Humans , Inflammation , Interleukin-10 , Lipopolysaccharides , Mice , NF-kappa B/metabolism , Probiotics/pharmacology , Probiotics/therapeutic use , Tight Junction Proteins , Trinitrobenzenesulfonic Acid/toxicity , Tumor Necrosis Factor-alpha/metabolism
10.
Sci Rep ; 12(1): 9389, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35672451

ABSTRACT

Gut dysbiosis is closely associated with the outbreak of inflammatory bowel disease (IBD) and psychiatric disorder. The Enterobacteriaceae population was higher in the feces of patients with inflammatory bowel disease (IBD-F) than in those of healthy control volunteers (HC-F). The Enterococcaceae and Lactobacillaceae populations were higher in the feces of IBD patients with depression (IBD/D+-F) vs. the feces of IBD patients without depression (IBD/D--F). Therefore, we examined the effects of Klebsiella oxytoca, Escherichia coli, Cronobacter sakazakii, Enterococcus faecium, and Pediococcus acidolactici overpopulated in IBD/D+-F and their byproducts LPS and exopolysaccharide (EPS) on the occurrence of depression and colitis in mice. Oral gavages of Klebsiella oxytoca, Escherichia coli, and Cronobacter sakazakii belonging to Enterobacteriaceae, singly or together, caused dose-dependently colitis and depression-like behaviors in germ-free and specific-pathogen-free mice. Although Enterococcus faecium and Pediococcus acidolactici did not significantly cause colitis and depression-like behaviors, they significantly deteriorated Klebsiella oxytoca- or Escherichia coli-induced colitis, neuroinflammation, and anxiety/depression-like behaviors and increased blood LPS, corticosterone, and IL-6 levels. The EPSs from Enterococcus faecium and Pediococcus acidolactici also worsened Klebsiella oxytoca LPS-induced colitis, neuroinflammation, and depression-like behaviors in mice and increased the translocation of fluorescein isothiocyanate-conjugated LPS into the hippocampus. However, Bifidobacterium longum, which was lower in IBD/D+-F vs. IBD/D--F, or its EPS suppressed them. In conclusion, Enterococcus faecium and Pediococcus acidolactici, known as a probiotic strain, and their EPSs may be a risk factor for the outbreak of depression and IBD.


Subject(s)
Colitis , Enterococcus faecium , Inflammatory Bowel Diseases , Pediococcus acidilactici , Animals , Colitis/chemically induced , Colitis/microbiology , Depression/psychology , Enterobacteriaceae , Escherichia coli , Humans , Lipopolysaccharides , Mice
11.
Sci Rep ; 11(1): 20406, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34650107

ABSTRACT

Gut dysbiosis is closely associated with the occurrence of inflammatory bowel disease (IBD) and psychiatric disorder. Here, to understand the difference of gut microbiota composition and physiological effect between IBD patients with (IBD/D+) or without depression (IBD/D-), we analyzed the fecal microbiota composition of patients with IBD with (/D+) or without depression (/D-) and healthy volunteers (HVs) and examined the effects of these fecal microbiota transplantations (FMTs) on the occurrence of systemic inflammation and anxiety/depression in mice. FMTs from patients with IBD/D+ or IBD/D- caused IBD-like colitis in the transplanted mice: they increased the myeloperoxidase activity, IL-1ß and IL-6 expression, and NF-κB+/CD11c+ cell population in the colon. Transplantation of the IBD/D+ patient feces (IBD/D+-F) caused IBD-like colitis more strongly than that of IBD/D--F. FMTs from patients with IBD/D+ also caused anxiety-/depression-like behaviors, increased the NF-κB+/Iba1+ and lipopolysaccharide (LPS)+/Iba1+ cell populations, and decreased the BDNF+/NeuN+ cell population in the hippocampus. They increased LPS levels in the blood. FMTs from patients with IBD/D- caused anxiety-like, but not depression-like, behaviors. α-/ß-diversities and composition of gut microbiota in IBD-F were different from those of HV feces (HV-F). The Enterobacteriaceae and Enterococcaceae populations and LPS levels were higher in the IBD-F than in the HV-F. The Enterococcaceae population was higher in IBD/D+-F vs. IBD/D--F. However, the transplantation of HV-F into mice previously transplanted with IBD/D+-F significantly reduced depression-like behaviors, NF-κB+/Iba1+ and LPS+/Iba1+ cell populations in the hippocampus, LPS levels in the feces and blood, and IL-1ß expression in the colon. These findings suggest that the outbreak of depression/anxiety may be dependent on the systemic inflammation with a leaky gut through the gut dysbiosis-attributable overproduction of bacterial LPS and suppression of tight junction protein expression in patients with IBD.


Subject(s)
Depression/microbiology , Fecal Microbiota Transplantation , Gastrointestinal Microbiome/physiology , Immunity , Inflammatory Bowel Diseases/microbiology , Adult , Animals , Anxiety/etiology , Colitis/etiology , Colon/metabolism , Corticosterone/blood , Depression/complications , Depression/etiology , Fecal Microbiota Transplantation/adverse effects , Hippocampus/metabolism , Humans , Inflammatory Bowel Diseases/complications , Interleukin-6/blood , Interleukin-6/metabolism , Male , Mice , Mice, Inbred C57BL , Middle Aged , Peroxidase/metabolism
12.
Sci Rep ; 11(1): 20659, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34667205

ABSTRACT

Gut lactobacilli and bifidobacteria on the immune homeostasis. Therefore, to understand the mechanism in vivo, we selected human fecal Lactobacillus rhamnosus NK210 and Bifidobacterium longum NK219, which strongly suppressed the IFN-γ to IL-10 expression (IIE) ratio in lipopolysaccharide-stimulated macrophages. Thereafter, we examined their effects on the endotoxin, antibiotics, or antitumor drug-stimulated immune imbalance in mice. Intraperitoneal injection of lipopolysaccharide and oral gavage of ampicillin increased IFN-γ and TNF-α expression in the spleen, colon, and hippocampus, while IL-10 expression decreased. However, intraperitoneal injection of cyclophosphamide suppressed IFN-γ, TNF-α, and IL-10 expression. LPS exposure induced splenic natural killer cell cytotoxicity against YAC-1 cells (sNK-C) and peritoneal macrophage phagocytosis against Candida albicans (pMA-P) activities, while cyclophosphamide and ampicillin treatments suppressed sNK-C and pMA-P activities. However, LPS, ampicillin, cyclophosphamide all increased IIE and TNF-α to IL-10 expression (TIE) ratios. Oral administration of NK210 and/or NK219 significantly reduced LPS-induced sNK-C, pMA-P, and IFN-γ expression, while cyclophosphamide- or ampicillin-suppressed sNK-C and pMA-P activities, cyclophosphamide-suppressed IFN-γ, TNF-α, and IL-10 expression, and ampicillin-suppressed IL-10 expression increased. Nevertheless, they suppressed LPS-, ampicillin-, or cyclophosphamide-induced IIE and TIE ratios, cognitive impairment, and gut dysbiosis. In particular, NK219, but not NK210, increased the IIE expression ratio in vitro and in vivo, and enhanced sNK-C and pMA-P activities in normal control mice, while cognitive function and gut microbiota composition were not significantly affected. These findings suggest that NK210, Lactobacillus sp, and NK219, Bifidobacterium additively or synergistically alleviate gut dysbiosis, inflammation, and cognitive impairment with immune imbalance by controlling IIE and TIE ratios.


Subject(s)
Bifidobacterium longum/metabolism , Dysbiosis/therapy , Lacticaseibacillus rhamnosus/metabolism , Animals , Bifidobacterium/metabolism , Bifidobacterium longum/pathogenicity , Cognitive Dysfunction/microbiology , Cognitive Dysfunction/therapy , Colitis/microbiology , Colitis/therapy , Feces/microbiology , Gastrointestinal Microbiome/drug effects , Humans , Inflammation/metabolism , Interferon-gamma/antagonists & inhibitors , Interferon-gamma/metabolism , Interleukin-10/metabolism , Lactobacillus/metabolism , Lacticaseibacillus rhamnosus/pathogenicity , Male , Mice , Mice, Inbred C57BL , Probiotics/administration & dosage , Tumor Necrosis Factor-alpha/metabolism
13.
Food Funct ; 12(21): 10750-10763, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34608923

ABSTRACT

Bacterial lipopolysaccharide (LPS) is a risk factor for the outbreak of Alzheimer's disease. Therefore, we isolated Lactobacillus plantarum NK151 and Bifidobacterium longum NK173 from a human fecal bacteria collection, which inhibited Escherichia coli LPS production, and examined their effects on the Escherichia coli K1- or LPS-induced cognitive impairment in mice. Oral gavage of NK151, NK173, or their (4 : 1) mixture (NKm) significantly alleviated Escherichia coli K1-induced cognitive impairment-like behaviors in the Y-maze and novel object recognition tasks. Their treatments decreased IL-1ß, IL-6, and TNF-α expression and NF-κB+/Iba1+ and LPS+/Iba1+ cell populations in the hippocampus, while the brain-derived neurotrophic factor (BDNF)+/neuronal nuclei (NeuN)+ cell population and BDNF to proBNDF expression increased. They suppressed LPS-induced cognition impairment-like behaviors and neuroinflammation marker levels in the hippocampus. Treatment with them reduced Escherichia coli K1- or LPS-induced LPS and apolipoprotein E levels in the blood and inflammatory marker levels in the colon. Furthermore, treatment with them modulated fecal Proteobacteria, Bacteroidetes, and Verrucomicrobia populations. Of these gut bacteria, Bacteroidaceae, Odoribacteraceae, Lactobacillaceae, Bifidobacteriaceae, Rikenellaceae, Helicobacteraceae, and Deferribacteraceae are correlated with cognitive function and blood and fecal LPS levels. These findings suggest that NK151 and NK173 may alleviate cognitive impairment with colitis by upregulating NF-κB-mediated BDNF expression through the suppression of fecal and blood bacterial LPS levels.


Subject(s)
Bifidobacterium longum , Cognitive Dysfunction/prevention & control , Gastrointestinal Microbiome/physiology , Lactobacillus plantarum , Lipopolysaccharides/metabolism , Probiotics/pharmacology , Animals , Cognitive Dysfunction/chemically induced , Gastrointestinal Microbiome/drug effects , Genome, Bacterial , Male , Mice , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Specific Pathogen-Free Organisms , Whole Genome Sequencing
14.
Sci Rep ; 11(1): 13344, 2021 06 25.
Article in English | MEDLINE | ID: mdl-34172773

ABSTRACT

Gastrointestinal (GI) strictures are difficult to treat in a variety of disease processes. Currently, there are no Food and Drug Administration (FDA) approved drugs for fibrosis in the GI tract. One of the limitations to developing anti-fibrotic drugs has been the lack of a reproducible, relatively inexpensive, large animal model of fibrosis-driven luminal stricture. This study aimed to evaluate the feasibility of creating a model of luminal GI tract strictures. Argon plasma coagulation (APC) was applied circumferentially in porcine esophagi in vivo. Follow-up endoscopy (EGD) was performed at day 14 after the APC procedure. We noted high grade, benign esophageal strictures (n = 8). All 8 strictures resembled luminal GI fibrotic strictures in humans. These strictures were characterized, and then successfully dilated. A repeat EGD was performed at day 28 after the APC procedure and found evidence of recurrent, high grade, fibrotic, strictures at all 8 locations in all pigs. Pigs were sacrificed and gross and histologic analyses performed. Histologic examination showed extensive fibrosis, with significant collagen deposition in the lamina propria and submucosa, as well as extensive inflammatory infiltrates within the strictures. In conclusion, we report a porcine model of luminal GI fibrotic stricture that has the potential to assist with developing novel anti-fibrotic therapies as well as endoscopic techniques to address recurring fibrotic strictures in humans.


Subject(s)
Fibrosis/pathology , Gastrointestinal Diseases/pathology , Animals , Constriction, Pathologic/pathology , Disease Models, Animal , Endoscopy/methods , Humans , Mucous Membrane/pathology , Swine
15.
Sci Rep ; 11(1): 6094, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33731795

ABSTRACT

Gut microbiota regulate the neurodevelopmental processes and brain functions through the regulation of the microbiota-gut interaction and gut-brain communication. Buspirone, an agonist for serotonin 5-HT1A receptors, is used for the treatment of anxiety/depression. Therefore, to understand the gut microbiota-mediated mechanism of buspirone on anxiety/depression, we examined its effect on the immobilization stress (IS) or Escherichia coli K1 (EC)-induced anxiety/depression in mice. Oral or intraperitoneal administration of buspirone significantly suppressed stressor-induced anxiety/depression-like behaviors in the elevated plus maze, light/dark transition, tail suspension, and forced swimming tasks. Their treatments also reduced TNF-α expression and NF-κB+/Iba1+ cell population in the hippocampus and myeloperoxidase activity and NF-κB+/CD11c+ cell population in the colon. Buspirone treatments partially restored IS- or EC-induced gut microbiota perturbation such as ß-diversity to those of normal control mice: they reduced the IS- or EC-induced gut Proteobacteria population. In particular, the anxiolytic activity of buspirone was positively correlated with the populations of Bacteroides and PAC001066_g in EC- or IS-exposed mice, while the populations of Lachnospiraceae, KE159660_g, LLKB_g, Helicobacter, and PAC001228_g were negatively correlated. The anti-depressant effect of buspirone was positively correlated with the Roseburia population. The fecal microbiota transplantations from buspirone-treated mice with IS-induced anxiety/depression or normal control mice suppressed IS-induced anxiety/depression-like behaviors and reduced hippocampal NF-κB+/Iba1+ and colonic NF-κB+/CD11c+ cell populations in the transplanted mice. Furthermore, they modified IS-induced perturbation of gut microbiota composition, particularly Proteobacteria, in the transplanted mice. In conclusion, buspirone alleviates IS as well as EC-induced anxiety/depression and colitis. It also suppresses associated neuroinflammation and modulates gut microbiota. Future studies can help to explain the relationship, if any, in the central and peripheral effects of buspirone.


Subject(s)
Anxiety , Buspirone/pharmacology , Colitis , Depression , Escherichia coli Infections , Escherichia coli/metabolism , Gastrointestinal Microbiome/drug effects , Animals , Anxiety/drug therapy , Anxiety/microbiology , Colitis/drug therapy , Colitis/microbiology , Depression/drug therapy , Depression/microbiology , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Male , Mice
16.
J Toxicol Environ Health A ; 84(2): 84-94, 2021 01 17.
Article in English | MEDLINE | ID: mdl-33103613

ABSTRACT

Auranofin is a gold complex used as an anti-rheumatic agent and may act as a potent anticancer drug against breast tumors. Trametinib is a specific mitogen-activated protein kinase inhibitor, approved for the treatment of metastatic melanoma. The aim of this study was to examine the synergistic effects of auranofin and trametinib on apoptosis in MCF-7 human breast cancer cells. The combination treatment inhibited cancer cell proliferation and induced cell cycle arrest at the sub-G1 phase and apoptosis via poly (ADP-ribose) polymerase cleavage and caspase-3/7 activation. It is noteworthy that this treatment significantly increased p38 mitogen-activated protein kinase (MAPK) phosphorylation to induce mitochondrial stress, subsequently promoting cancer cell apoptosis through release of apoptosis-inducing factor. Further data demonstrated that combined treatment significantly induced increase in nuclear translocation of AIF. These results indicated that activation of the p38 MAPK signaling pathway and mitochondrial apoptosis may contribute to the synergistic consequences in MCF-7 cells. Collectively, our data demonstrated that combined treatment with auranofin and trametinib exhibited synergistic breast cancer cell death and this combination might be utilized as a novel therapeutic strategy for breast cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Auranofin/pharmacology , Breast Neoplasms/drug therapy , Pyridones/pharmacology , Pyrimidinones/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Female , Humans , MCF-7 Cells , p38 Mitogen-Activated Protein Kinases/metabolism
17.
J Microbiol Biotechnol ; 30(8): 1222-1226, 2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32347078

ABSTRACT

Lactobacillus reuteri NK33 (NK33) and Bifidobacterium adolescentis NK98 (NK98) alleviate immobilization stress-induced depression. To understand the gut microbiota-mediated mechanisms of NK33 and NK98 against depression, we examined their effects on Escherichia coli K1 (K1)-induced depression and gut dysbiosis in mice. NK33, NK98, and their mixtures (1:1, 4:1, and 9:1) mitigated K1-induced depression and colitis. NK33 and NK98 additively or synergistically increased BDNF+/NeuN+ cell population and suppressed NF-κB action in the hippocampus. They alleviated gut dysbiosis by reducing the Proteobacteria population and increasing the Clostridia population. These results suggest that NK33 and NK98 may alleviate depression and colitis by ameliorating gut dysbiosis.


Subject(s)
Bifidobacterium adolescentis/physiology , Depression/therapy , Dysbiosis/therapy , Escherichia coli/pathogenicity , Gastrointestinal Microbiome/physiology , Limosilactobacillus reuteri/physiology , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Colitis/microbiology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Depression/microbiology , Disease Models, Animal , Dysbiosis/microbiology , Feces/microbiology , Male , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
18.
Nutrients ; 12(4)2020 Mar 26.
Article in English | MEDLINE | ID: mdl-32224881

ABSTRACT

Gut dysbiosis is closely connected with the outbreak of psychiatric disorders with colitis. Bifidobacteria-fermented red ginseng (fRG) increases the absorption of ginsenoside Rd and protopanxatriol into the blood in volunteers and mice. fRG and Rd alleviates 2,4,6-trinitrobenzenesulfonic acid-induced colitis in mice. Therefore, to understand the gut microbiota-mediated mechanism of fRG against anxiety/depression, we examined the effects of red ginseng (RG), fRG, ginsenoside Rd, and protopanaxatriol on the occurrence of anxiety/depression, colitis, and gut dysbiosis in mice. Mice with anxiety/depression were prepared by being exposed to two stressors, immobilization stress (IS) or Escherichia coli (EC). Treatment with RG and fRG significantly mitigated the stress-induced anxiety/depression-like behaviors in elevated plus maze, light-dark transition, forced swimming (FST), and tail suspension tasks (TST) and reduced corticosterone levels in the blood. Their treatments also suppressed the stress-induced NF-κB activation and NF-κB+/Iba1+ cell population in the hippocampus, while the brain-derived neurotrophic factor (BDNF) expression and BDNF+/NeuN+ cell population were increased. Furthermore, treatment with RG or fRG suppressed the stress-induced colitis: they suppressed myeloperoxidase activity, NF-κB activation, and NF-κB+/CD11c+ cell population in the colon. In particular, fRG suppressed the EC-induced depression-like behaviors in FST and TST and colitis more strongly than RG. fRG treatment also significantly alleviated the EC-induced NF-κB+/Iba1+ cell population and EC-suppressed BDNF+/NeuN+ cell population in the hippocampus more strongly than RG. RG and fRG alleviated EC-induced gut dysbiosis: they increased Bacteroidetes population and decreased Proteobacteria population. Rd and protopanaxatriol also alleviated EC-induced anxiety/depression and colitis. In conclusion, fRG and its constituents Rd and protopanaxatriol mitigated anxiety/depression and colitis by regulating NF-κB-mediated BDNF expression and gut dysbiosis.


Subject(s)
Depression , Fermented Foods , Gastrointestinal Microbiome/drug effects , Ginsenosides/pharmacology , Sapogenins/pharmacology , Animals , Anxiety/metabolism , Anxiety/physiopathology , Behavior, Animal/drug effects , Bifidobacterium/metabolism , Depression/metabolism , Depression/physiopathology , Disease Models, Animal , Dysbiosis/metabolism , Dysbiosis/physiopathology , Male , Maze Learning/drug effects , Mice , Mice, Inbred C57BL , Panax/chemistry , Panax/metabolism
19.
ACS Biomater Sci Eng ; 4(4): 1445-1462, 2018 Apr 09.
Article in English | MEDLINE | ID: mdl-33418674

ABSTRACT

Currently, there is great interest in the development of ways to achieve the benefits of radiation treatments with reduced negative effects. The present study demonstrates the utilization of radio-luminescent particles (RLPs) as a means to achieve radio-sensitization and enhancement and their ability to affect head- and neck-cancer-cell cultures (in vitro) and xenografts (in vivo). Our approach utilizes a naturally abundant radio-luminescent mineral, calcium tungstate (CaWO4), in its micro or nanoparticulate form for generating secondary UV-A light by γ ray or X-ray photons. In vitro tests demonstrate that unoptimized RLP materials (uncoated CaWO4 (CWO) microparticles (MPs) and PEG-PLA-coated CWO nanoparticles (NPs)) induce a significant enhancement of the tumor-suppressive effect of X-rays and γ rays in both radio-sensitive- and radio-resistant-cancer models; uncoated CWO MPs and PEG-PLA-coated CWO NPs demonstrate comparable radio-sensitization efficacies in vitro. Mechanistic studies reveal that concomitant CaWO4 causes increased mitotic death in radio-resistant cells treated with radiation, whereas CaWO4 sensitizes radio-sensitive cells to X-ray-induced apoptosis and necrosis. The radio-sensitization efficacy of intratumorally injected CaWO4 particles (uncoated CWO MPs and PEG-PLA-coated CWO NPs) is also evaluated in vivo in mouse head- and neck-cancer xenografts. Uncoated CWO MPs suppress tumor growth more effectively than PEG-PLA-coated CWO NPs. On the basis of theoretical considerations, an argument is proposed that uncoated CWO MPs release subtoxic levels of tungstate ions, which cause increased photoelectric-electron-emission effects. The effect of folic acid functionalization on the in vitro radio-sensitization behavior produced by PEG-PLA-coated CWO NPs is studied. Surface folic acid results in a significant improvement in the radio-sensitization efficiency of CaWO4.

20.
Int J Pharm ; 490(1-2): 265-72, 2015 Jul 25.
Article in English | MEDLINE | ID: mdl-26004002

ABSTRACT

Liquid crystal (LC) technology has attracted much interest for new injectable sustained-release (SR) formulations. In this study, an injectable liquid crystal-forming system (LCFS) including entecavir was prepared for the treatment of hepatitis B. In particular, an anchoring effect was introduced because LCFSs are relatively hydrophobic while entecavir is a slightly charged drug. The physicochemical properties of LCFSs were investigated by cryo-transmission electron microscopy (cryo-TEM), polarized optical microscopy, and small-angle X-ray scattering (SAXS), showing typical characteristics of the liquid crystalline phase, which was classified as the hexagonal phase. A pharmacokinetic study in rats showed sustained release of entecavir for 3-5 days with a basic LCFS formulation composed of sorbitan monooleate (SMO), phosphatidyl choline (PC), and tocopherol acetate (TA) as the main LC components. 1,2-Dipalmitoyl-sn-glycero-3-phosphatidic acid (DPPA), an anionic phospholipid, was added to increase the anchoring effect between the cationic entecavir and the anionic DPPA, which resulted in a 1.5-times increase in half-life in rats. In addition, anchoring was strengthened by optimizing the pH to 2.5-4.5, increasing the half-life in the rat and dog. Also, due to the increasing terminal half-life from rat to dog resulting from species differences, LCFS produced one week delivery of entecavir in rat and two weeks delivery in dog. Therefore, LCFS injection using the anchoring effect for entecavir can potentially be used to deliver the drug over more than 2 weeks or even 1 month for the treatment of hepatitis B.


Subject(s)
Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/chemistry , Guanine/analogs & derivatives , Liquid Crystals/chemistry , Animals , Chemistry, Pharmaceutical , Dogs , Drug Delivery Systems/methods , Guanine/administration & dosage , Guanine/chemistry , Half-Life , Hexoses/chemistry , Hydrophobic and Hydrophilic Interactions , Injections/methods , Male , Phenylpropionates/chemistry , Phosphatidylcholines/chemistry , Phospholipids/chemistry , Rats , Rats, Sprague-Dawley , Scattering, Small Angle , X-Ray Diffraction/methods , alpha-Tocopherol/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...