Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1279439, 2023.
Article in English | MEDLINE | ID: mdl-38045685

ABSTRACT

Rationale: While the immune system plays a crucial role in the development of hypertension, the specific contributions of distinct immune cell populations remain incompletely understood. The emergence of single-cell RNA-sequencing (scRNA-seq) technology enables us to analyze the transcriptomes of individual immune cells and to assess the significance of each immune cell type in hypertension development. Objective: We aimed to investigate the hypothesis that B cells play a crucial role in the development of fructose-induced hypertension. Methods and Results: Eight-week-old Dahl salt-sensitive (SS) male rats were divided into two groups and given either tap water (TW) or a 20% fructose solution (HFS) for 4 weeks. Systolic blood pressure was measured using the tail-cuff method. ScRNA-seq analysis was performed on lamina propria cells (LPs) and peripheral blood mononuclear cells (PBMCs) obtained from SS rats subjected to either TW or HFS. The HFS treatment induced hypertension in the SS rats. The analysis revealed 27 clusters in LPs and 28 clusters in PBMCs, allowing for the identification and characterization of various immune cell types within each cluster. Specifically, B cells and follicular helper T (Tfh) cells were prominent in LPs, while B cells and M1 macrophages dominated PBMCs in the HFS group. Moreover, the HFS treatment triggered an increase in the number of B cells in both LPs and PBMCs, accompanied by activation of the interferon pathway. Conclusions: The significant involvement of B cells in intestinal and PBMC responses indicates their pivotal contribution to the development of hypertension. This finding suggests that targeting B cells could be a potential strategy to mitigate high blood pressure in fructose-induced hypertension. Moreover, the simultaneous increase in follicular B cells and Tfh cells in LPs, along with the upregulation of interferon pathway genes in B cells, underscores a potential autoimmune factor contributing to the pathogenesis of fructose-induced hypertension in the intestine.


Subject(s)
Hypertension , Leukocytes, Mononuclear , Male , Rats , Animals , Lipopolysaccharides/metabolism , Single-Cell Gene Expression Analysis , Rats, Inbred Dahl , Hypertension/chemically induced , Hypertension/genetics , Interferons/metabolism
2.
Animals (Basel) ; 13(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37238018

ABSTRACT

A feeding trial was conducted to investigate the effect of dietary supplementation of Chlorella vulgaris (CV) or Tetradesmus obliquus (TO) on laying performance, egg quality, and gut health indicators of laying hens. A total of 144 Hy-Line Brown laying hens aged 21 weeks were randomly assigned to one of three dietary treatments with eight replicates of six hens. Dietary treatments were as follows: CON, basal diet; CV, basal diet + 5 g C. vulgaris/kg of diet; TO, basal diet + 5 g T. obliquus/kg of diet. The results showed that diets supplemented with CV or TO had insignificant effects on laying performance, egg quality (i.e., Haugh unit and eggshell strength and thickness), jejunal histology, cecal short-chain fatty acids, and antioxidant/immune markers in ileal mucosa samples of laying hens. Compared with the control group, the egg yolk color score was higher (p < 0.05) in laying hens fed on diets containing CV and TO, although the former was a more intense yellow than the latter. Small intestinal lamina propria cells were isolated using flow cytometry to examine the percentages of immune cell subpopulations. Dietary microalgae did not affect B cells or monocytes/macrophages but altered the percentage of CD4+ T cells and CD8- TCR γδ T cells. Collectively, diets supplemented with C. vulgaris or T. obliquus can improve egg yolk color and would modulate host immune development and competence in laying hens.

3.
Animals (Basel) ; 12(23)2022 Dec 04.
Article in English | MEDLINE | ID: mdl-36496934

ABSTRACT

Gut health has been attracting attention in the livestock industry as several studies suggest that it is a crucial factor for growth performance and general health status in domestic animals, including broiler chickens. Previously, antibiotics were widely used to improve livestock growth, but their use is now prohibited due to serious problems related to antibiotic resistance. Thus, finding new feed additives to replace antibiotics is drawing attention. Probiotics are representative feed additives and many beneficial effects on broiler chickens have been reported. However, many probiotic studies are focused on productivity only, and there are insufficient studies related to the gut environment, especially gut immunity and gut microbiome. In this study, we conducted an animal experiment using Lacticaseibacillus paracasei NSMJ56 to determine whether it has beneficial effects on gut immunity and microbiome. To evaluate the effects of NSMJ56 supplementation, newly hatched Ross 308 broiler chickens were fed an NSMJ56-containing diet for 10 days, and growth performance, antioxidant indicators, gut morphology, gut immunity-related parameters, and gut microbiome were analyzed. Flow cytometry analysis results revealed that NSMJ56 treatment increased CD4+ T cells and decreased CD8+ T cells in small intestine lamina propria and decreased IL1b and IL10 gene expression in small intestine tissue. In the microbiome analysis, NSMJ56 treatment increased the alpha diversity indices and led to three enriched genera: Massilimicrobiota, Anaerotignum, and Coprococcus. This study suggests that NSMJ56 supplementation has regulatory effects on gut immunity and microbiome in early-age broiler chickens.

SELECTION OF CITATIONS
SEARCH DETAIL
...