Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 131: 821-827, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30904531

ABSTRACT

In this study, chitosan/polyvinyl alcohol/TiO2 nanofiber was fabricated via electrospinning at a pump rate of 1.5 mL/h and voltage 6 kV. Field-emission scanning electron microscopic images showed bead free finer nanofiber. Fourier transform infrared spectra proved the formation of strong bond among chitosan, polyvinyl alcohol and TiO2. X-ray powder diffraction showed that TiO2 became amorphous in the composite nanofiber. Toughness and thermal stability of the chitosan/PVA nanofibrous membrane was increased with addition TiO2. The chitosan/PVA/TiO2 nanofibrous membrane was stable at basic medium. But degraded in acidic and water medium after 93 and 162 h, respectively. The adsorption mechanism of congo red obeyed the Langmuir isotherm model. On the other hand, adsorption characteristic of methyl orange fitted well with both Langmuir and Freundlich isotherm models. The maximum adsorption capacity of the resulting membrane for congo red and methyl orange is 131 and 314 mg/g, respectively. However, a high dose of adsorbent was required for congo red.


Subject(s)
Azo Compounds/chemistry , Chitosan/chemistry , Congo Red/chemistry , Nanofibers/chemistry , Polyvinyl Alcohol/chemistry , Titanium/chemistry , Adsorption , Membranes, Artificial , Nanofibers/ultrastructure , Spectrum Analysis , Tensile Strength , Thermodynamics , Water Pollutants, Chemical/chemistry , Water Purification
2.
Carbohydr Polym ; 191: 79-85, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29661324

ABSTRACT

The chitosan/polyvinyl Alcohol/zeolite electrospun composite nanofibrous membrane was fabricated for adsorption of methyl orange. The EDX, TGA and tensile test were carried out for the characterization of the membrane. The Young's Modulus of the nanofibrous membranes increased by more than 100% with the addition of zeolite to chitosan/PVA. The batch adsorption tests were conducted by varying the initial concentration of methyl orange, contact time and pH of the dye solution. UV-vis results showed that most of the dye was adsorbed within 6 min. An adsorption kinetic study was carried out using the pseudo-second-order kinetic model, Lagergren-first-order model and intra particle diffusion model. The adsorption kinetics obeyed the Pseudo second order model. The adsorption mechanism was analyzed using the Langmuir and Freundlich isotherm model. The experimental data fits well with the Freundlich model. The adsorption capacity of the membrane was 153 mg/g. Adsorption capacity was decreased with increasing pH value. The resulting nanofiber became less active over methyl orange after several runs.

3.
Int J Biol Macromol ; 104(Pt A): 1133-1142, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28690164

ABSTRACT

The chitosan/polyvinyl alcohol/TiO2 composite was synthesized. Two different degrees of deacetylation of chitosan were prepared by hydrolysis to compare the effectiveness of them. The composite was analyzed via field emission scanning electron microscopy, Fourier transform infrared, X-ray diffraction, thermal gravimetric analysis, weight loss test and adsorption study. The FTIR and XRD results proved the interaction among chitosan, PVA and TiO2 without any chemical reaction. It was found that, chitosan with higher degree of deacetylation has better stability. Furthermore, it also showed that higher DD of chitosan required less time to reach equilibrium for methyl orange. The adsorption followed the pseudo-second-order kinetic model. The Langmuir and Freundlich isotherm models were fitted well for isotherm study. Adsorption capacity was higher for the composite containing chitosan with higher DD. The dye removal rate was independent of the dye's initial concentration. The adsorption capacity was increased with temperature and it was found from reusability test that the composite containing chitosan with higher DD is more reusable. It was notable that adsorption capacity was even after 15 runs. Therefore, chitosan/PVA/TiO2 composite can be a very useful material for dye removal.


Subject(s)
Chitosan/chemistry , Nanocomposites/chemistry , Polyvinyl Alcohol/chemistry , Titanium/chemistry , Acetylation , Adsorption , Hydrolysis , Kinetics , Temperature
4.
Carbohydr Polym ; 157: 1568-1576, 2017 Feb 10.
Article in English | MEDLINE | ID: mdl-27987870

ABSTRACT

A chitosan/polyvinyl alcohol (PVA)/zeolite composite was fabricated in this study. The composite was analyzed through field emission scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis, and weight loss test. FTIR and XRD results revealed a strong interaction among chitosan, PVA, and zeolite. Weight loss test results indicated that the composite was stable in acidic and basic media. Congo red was removed through flocculation, and the removal rate was 94% at an initial concentration of 100mg/L for a dose of 1g/L. The removal rate of methyl orange was controlled by adsorption at an initial concentration of less than 100mg/L. Flocculation occurred at high concentrations. The removal rate was also 94% at an initial concentration of 500mg/L for a dose of 5g/L. The adsorption behavior of the composite for the removal of methyl orange and Cr(VI) was described by using a pseudo-second-order kinetic model. The adsorption capacity of the composite for Cr(VI) was 450mg/g. Therefore, the synthesized composite exhibited versatility during the removal of dyes and heavy metals.

SELECTION OF CITATIONS
SEARCH DETAIL
...