Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-491004

ABSTRACT

Over 20 mutations have been identified in the N-Terminal Domain (NTD) of SARS-CoV-2 spike and yet few of them are fully characterised. Here we first examined the contribution of the NTD to infection and cell-cell fusion by constructing different VOC-based chimeric spikes bearing B.1617 lineage (Delta and Kappa variants) NTDs and generating spike pseudotyped lentivirus (PV). We found the Delta NTD on a Kappa or WT background increased spike S1/S2 cleavage efficiency and virus entry, specifically in Calu-3 lung cells and airway organoids, through use of TMPRSS2. We have previously shown Delta spike confers rapid cell-cell fusion kinetics; here we show that increased fusogenicity can be conferred to WT and Kappa variant spikes by transfer of the Delta NTD. Moving to contemporary variants, we found that BA.2 had higher entry efficiency in a range of cell types as compared to BA.1. BA.2 showed higher fusogenic activity than BA.1, but the BA.2 NTD could not confer higher fusion to BA.1 spike. There was low efficiency of TMPRSS2 usage by both BA.1 and BA.2, and chimeras of Omicron BA.1 and BA.2 spikes with a Delta NTD did not result in more efficient use of TMRPSS2 or cell-cell fusogenicity. We conclude that the NTD allosterically modulates S1/S2 cleavage and spike-mediated functions such as entry and cell-cell fusion in a spike context dependent manner, and allosteric interactions may be lost when combining regions from more distantly related spike proteins. These data may explain the lack of successful SARS-CoV-2 inter-variant recombinants bearing breakpoints within spike.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-473248

ABSTRACT

The SARS-CoV-2 Omicron BA.1 variant emerged in late 2021 and is characterised by multiple spike mutations across all spike domains. Here we show that Omicron BA.1 has higher affinity for ACE2 compared to Delta, and confers very significant evasion of therapeutic monoclonal and vaccine-elicited polyclonal neutralising antibodies after two doses. mRNA vaccination as a third vaccine dose rescues and broadens neutralisation. Importantly, antiviral drugs remdesevir and molnupiravir retain efficacy against Omicron BA.1. We found that in human nasal epithelial 3D cultures replication was similar for both Omicron and Delta. However, in lower airway organoids, Calu-3 lung cells and gut adenocarcinoma cell lines live Omicron virus demonstrated significantly lower replication in comparison to Delta. We noted that despite presence of mutations predicted to favour spike S1/S2 cleavage, the spike protein is less efficiently cleaved in live Omicron virions compared to Delta virions. We mapped the replication differences between the variants to entry efficiency using spike pseudotyped virus (PV) entry assays. The defect for Omicron PV in specific cell types correlated with higher cellular RNA expression of TMPRSS2, and accordingly knock down of TMPRSS2 impacted Delta entry to a greater extent as compared to Omicron. Furthermore, drug inhibitors targeting specific entry pathways demonstrated that the Omicron spike inefficiently utilises the cellular protease TMPRSS2 that mediates cell entry via plasma membrane fusion. Instead, we demonstrate that Omicron spike has greater dependency on cell entry via the endocytic pathway requiring the activity of endosomal cathepsins to cleave spike. Consistent with suboptimal S1/S2 cleavage and inability to utilise TMPRSS2, syncytium formation by the Omicron spike was dramatically impaired compared to the Delta spike. Overall, Omicron appears to have gained significant evasion from neutralising antibodies whilst maintaining sensitivity to antiviral drugs targeting the polymerase. Omicron has shifted cellular tropism away from TMPRSS2 expressing cells that are enriched in cells found in the lower respiratory and GI tracts, with implications for altered pathogenesis.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-446781

ABSTRACT

Prevention of SARS-CoV-2 entry in cells through the modulation of viral host receptors, such as ACE2, could represent a new therapeutic approach complementing vaccination. However, the mechanisms controlling ACE2 expression remain elusive. Here, we identify the farnesoid X receptor (FXR) as a direct regulator of ACE2 transcription in multiple COVID19-affected tissues, including the gastrointestinal and respiratory systems. We demonstrate that FXR antagonists, including the over-the-counter compound z-guggulsterone (ZGG) and the off-patent drug ursodeoxycholic acid (UDCA), downregulate ACE2 levels, and reduce susceptibility to SARS-CoV-2 infection in lung, cholangiocyte and gut organoids. We then show that therapeutic levels of UDCA downregulate ACE2 in human organs perfused ex situ and reduce SARS-CoV-2 infection ex vivo. Finally, we perform a retrospective study using registry data and identify a correlation between UDCA treatment and positive clinical outcomes following SARS-CoV-2 infection, including hospitalisation, ICU admission and death. In conclusion, we identify a novel function of FXR in controlling ACE2 expression and provide evidence that this approach could be beneficial for reducing SARS-CoV-2 infection, thereby paving the road for future clinical trials.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-443253

ABSTRACT

The SARS-CoV-2 B.1.617.2 (Delta) variant was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha). In vitro, B.1.617.2 is 6-fold less sensitive to serum neutralising antibodies from recovered individuals, and 8-fold less sensitive to vaccine-elicited antibodies as compared to wild type Wuhan-1 bearing D614G. Serum neutralising titres against B.1.617.2 were lower in ChAdOx-1 versus BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies against the receptor binding domain (RBD) and N-terminal domain (NTD), in particular to the clinically approved bamlavinimab and imdevimab monoclonal antibodies. B.1.617.2 demonstrated higher replication efficiency in both airway organoid and human airway epithelial systems as compared to B.1.1.7, associated with B.1.617.2 spike being in a predominantly cleaved state compared to B.1.1.7. Additionally we observed that B.1.617.2 had higher replication and spike mediated entry as compared to B.1.617.1, potentially explaining B.1.617.2 dominance. In an analysis of over 130 SARS-CoV-2 infected healthcare workers across three centres in India during a period of mixed lineage circulation, we observed substantially reduced ChAdOx-1 vaccine efficacy against B.1.617.2 relative to non-B.1.617.2. Compromised vaccine efficacy against the highly fit and immune evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-194498

ABSTRACT

Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), which is the cause of a present global pandemic, infects human lung alveolar cells (hACs). Characterising the pathogenesis is crucial for developing vaccines and therapeutics. However, the lack of models mirroring the cellular physiology and pathology of hACs limits the study. Here, we develop a feeder-free, long-term three-dimensional (3D) culture technique for human alveolar type 2 (hAT2) cells, and investigate infection response to SARS-CoV-2. By imaging-based analysis and single-cell transcriptome profiling, we reveal rapid viral replication and the increased expression of interferon-associated genes and pro-inflammatory genes in infected hAT2 cells, indicating robust endogenous innate immune response. Further tracing of viral mutations acquired during transmission identifies full infection of individual cells effectively from a single viral entry. Our study provides deep insights into the pathogenesis of SARS-CoV-2, and the application of long-term 3D hAT2 cultures as models for respiratory diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...