Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Physiol (Oxf) ; 190(2): 151-61, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17394571

ABSTRACT

AIM: The present study is the first to compare the physiological impact of either forced treadmill or voluntary wheel running exercise on hindlimb muscle in mice. METHODS: Male C57BL/6 mice were subjected to either 6 weeks of forced treadmill or voluntary wheel running exercise. Mice in the treadmill running exercise group (TRE; n = 8) ran 1.9 km day(-1) at a speed of 16 m min(-1) against an uphill incline of 11 degrees. In the running wheel exercise group (RWE; n = 8) animals ran 8.8 +/- 0.2 km per day (average speed 42 +/- 2 m min(-1)). After the experimental period, animals were killed and mechanical performance and oxygen consumption of isolated extensor digitorum longus (EDL) muscle were determined during serial electrical stimulation at 0.5, 1 and 2 Hz. RESULTS: Steady-state half-width time (HWT) of twitch contraction at 0.5 Hz was significantly shorter in TRE and RWE than controls (CON) (41.3 +/- 0.2, 41.3 +/- 0.1 and 44.3 +/- 0.1 s respectively; P < 0.05). The rate of fatigue development and HWT lengthening at 2 Hz was the same in RWE and CON but lower in TRE (1.2-fold and twofold respectively; P < 0.05). EDL oxygen consumption, mitochondrial content and myosin heavy chain (MyHC) composition were not different between the groups. CONCLUSION: These results indicate that both exercise modalities have an effect on a hindlimb fast-twitch muscle in mice, with the greatest impact seen with forced treadmill running.


Subject(s)
Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Physical Conditioning, Animal/methods , Animals , Biomechanical Phenomena , Citrate (si)-Synthase/metabolism , Electric Stimulation/methods , Hindlimb , Isometric Contraction/physiology , Male , Mice , Mice, Inbred C57BL , Mitochondria/physiology , Muscle, Skeletal/metabolism , Myosin Heavy Chains/analysis , Oxygen Consumption/physiology , Physical Exertion/physiology , Time Factors
2.
Article in English | MEDLINE | ID: mdl-15533111

ABSTRACT

In semiarid parts of Africa animal traction is still one of the most reliable sources for rural work power. However, draught animals have to produce most of their work power at an unfavourable moment of the year that is at the end of the dry season when feedlot is scare. To improve their condition prior to the planting season, a short training could help. The effect of training can be expressed by the changes in contents of Na(+), K(+)-pumps in the muscle cell membrane. After a training period of 15 days all cattle showed a mean increase in Na(+), K(+)-ATPase of 24% (P < 0.01) in the semitendinosus muscle of the hind leg, whereas the control group showed no change. Bulls demonstrated already after 8 days of training an increase of 20% (P < 0.05). The principal factor responsible for this up-regulation of the Na(+), K(+)-pumps is most probably the excitation of muscles during exercise. In the course of the 15 days training period, the surge of plasma K(+) in during exercise showed a tendency to decrease, but this was not significant. Nevertheless, the reduced elevations of plasma [K(+)] may delay the moment of fatigue and so improve endurance. In conclusion, a training period of 8-15 days improves the contents of Na(+), K(+)-pumps and so the possible work output of draught cattle.


Subject(s)
Cattle/physiology , Muscle, Skeletal/enzymology , Physical Conditioning, Animal/physiology , Potassium/blood , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Biopsy/veterinary , Cattle/metabolism , Female , Homeostasis , Male , Muscle, Skeletal/pathology , Sex Factors , Time Factors
3.
J Endocrinol ; 181(3): 393-400, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15171687

ABSTRACT

We have investigated the hypothesis that uridine 5'-diphosphate (UDP)-glucuronyltransferases (UGTs) and beta-glucuronidase are jointly involved in a mechanism for the storage and mobilization of iodothyronine metabolites in liver, kidney, heart and brain. Specifically, we predicted UGT activities to decrease and increase respectively, and beta-glucuronidase activity to increase and decrease respectively in hypo- and hyperthyroidism. To this end we have studied the effects of thyroid status on the activities of different enzymes involved in thyroid hormone metabolism in liver, kidney, heart and brain from adult rats with experimentally induced hypo- and hyperthyroidism. We used whole organ homogenates to determine the specific enzyme activities of phenol- and androsteron-UGT, beta-glucuronidase, as well as iodothyronine deiodinase types I and II. Deiodinase type I activities in liver and kidney were decreased in hypothyroid animals and, in liver only, increased in hyperthyroidism. Deiodinase type II activity was increased in hyperthyroid rat kidney only. Interestingly, in the heart, deiodinase type I-specific activity was increased fourfold, although the increase was not statistically significant. Cardiac deiodinase type I activity was detectable but not sensitive to thyroid status. Hepatic phenol-UGT as well as androsteron-UGT activities were decreased in hypothyroid rats, with specific androsteron-UGT activities two to three orders of magnitude lower than phenol-UGT activities. Both UGT isozymes were well above detection limits in heart, but appeared to be insensitive to thyroid status. In contrast, cardiac beta-glucuronidase activity decreased in hypothyroid tissue, whereas the activity of this enzyme in the other organs investigated did not change significantly. In summary, cardiac beta-glucuronidase, albeit in low levels, and hepatic phenol-UGT activities were responsive only to experimental hypothyroidism. Although a high basal activity of the pleiotropic beta-glucuronidase masking subtle activity changes in response to thyroid status cannot be ruled out, we conclude that hepatic, renal and cardiac UGT and beta-glucuronidase activities are not regulated reciprocally with thyroid status.


Subject(s)
Glucuronidase/metabolism , Glucuronosyltransferase/metabolism , Iodide Peroxidase/metabolism , Isoenzymes/metabolism , Myocardium/enzymology , Thyroid Diseases/enzymology , Animals , Brain/enzymology , Glucuronosyltransferase/antagonists & inhibitors , Hyperthyroidism/enzymology , Hypothyroidism/enzymology , Kidney/enzymology , Liver/enzymology , Models, Animal , Ouabain/metabolism , Pentachlorophenol/pharmacology , Rats , Rats, Wistar
4.
J Endocrinol ; 175(3): 587-96, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12475370

ABSTRACT

Uptake of tri-iodothyronine (T(3)) was compared with that of thyroxine (T(4)) in the embryonic heart cell line H9c2 (2-1). These cells propagate as myoblasts and form differentiated myotubes upon reduction of the serum concentration, as indicated by a 31-fold increase in creatine kinase activity. Protein and DNA content per well were around 2-fold higher in myotubes than in myoblasts. When expressed per well, T(3) and T(4) uptake were, compared with myoblasts, 1.9- to 2-fold and 3.1- to 4-fold higher in myotubes respectively. On the other hand, the characteristics of T(3) and T(4) uptake were similar in myoblasts and myotubes. At any time-point, T(4) uptake was 2-fold higher than that of T(3), and both uptakes were energy but not Na(+) dependent. T(3) and T(4) uptake exhibited mutual inhibition in myoblasts and myotubes: 10 microM unlabeled T(3) reduced T(4) uptake by 51-60% (P<0.001), while 10 microM T(4) inhibited T(3) uptake by 48-51% (P<0.001). Furthermore, T(3) and T(4) uptake in myoblasts was dose-dependently inhibited by tryptophan (maximum inhibition around 70%; P<0.001). Exposure of the cells to T(3) or T(4) during differentiation significantly increased the fusion index (35 and 40%; P < 0.01). Finally, both myoblasts and myotubes showed a small deiodinase type I activity, while deiodinase type II activity was undetectable. In conclusion, T(3) and T(4) share a common energy-dependent transport system in H9c2(2-1) cells, that may be important for the availability of thyroid hormone during differentiation.


Subject(s)
Heart/embryology , Myoblasts, Cardiac/metabolism , Thyroxine/metabolism , Triiodothyronine/metabolism , Analysis of Variance , Animals , Cell Line , Embryonic Induction/physiology , Iodide Peroxidase/metabolism , Microscopy, Phase-Contrast , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...