Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Vet Res ; 68(11): 1232-8, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17975979

ABSTRACT

OBJECTIVE: To investigate whether training for show jumping that is commenced early after birth affects the characteristics of equine locomotory muscle. ANIMALS: 19 Dutch Warmblood horses. PROCEDURES: Horses were assigned to a trained or not trained (control) group. After weaning, training (free jumping [2 d/wk] that was alternated with a 20-minute period of exercise in a mechanical rotating walker [3 d/wk]) was started and continued until horses were 3 years old. Fiber type composition (determined from myosin heavy chain [MyHC] content), fiber area, diffusion index (area supplied by 1 capillary), citrate synthase activity, and Na(+),K(+)-ATPase content were assessed in gluteus medius muscle specimens collected at 0.5, 1, 2, and 3 years. RESULTS: Developmental changes included an increase in MyHC fiber type IIa and a decrease in type IIad; increases in fiber area, diffusion index, and citrate synthase activity; and a decrease in Na(+),K(+)-ATPase content. The MyHC fiber type I and type IId were detected in high and low proportions, respectively. Training increased Na(+),K(+)-ATPase content, but did not affect other variables. CONCLUSIONS AND CLINICAL RELEVANCE: In horses, show jumping training at an early age resulted in increased Na(+),K(+)-ATPase content of the deep portions of the gluteus medius muscle. The lack of training effects on the other muscle characteristics can partly be explained by the fact that an appropriate (aerobic) fiber type composition was already established at training commencement. These data also suggested that the developmental changes in equine muscle represent sufficient adaptation to meet the demands of this specific training.


Subject(s)
Horses/growth & development , Muscle Development/physiology , Muscle, Skeletal/growth & development , Physical Conditioning, Animal/physiology , Animals , Biopsy/methods , Citrate (si)-Synthase/metabolism , Horses/metabolism , Immunohistochemistry/veterinary , Linear Models , Muscle Fibers, Skeletal/enzymology , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/enzymology , Myosin Heavy Chains/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism
2.
Mol Cell Endocrinol ; 264(1-2): 109-17, 2007 Jan 29.
Article in English | MEDLINE | ID: mdl-17118529

ABSTRACT

Conjugation reactions are important pathways in the peripheral metabolism of thyroid hormones. Rat cardiac fibroblasts produce and secrete glucuronidated thyroxine (T4G) and 3,3',5-triiodothyronine (T3G). We here show that, compared to fibroblasts from other anatomical locations, the capacity of cardiofibroblasts to secrete T4G and T3G is highest. H9c2(2-1) myotubes, a model system for cardiomyocytes, take up T4G and T3G at a rate that is 10-15 times higher than that for the unconjugated thyroid hormones. T3 and T4, and their glucuronides, stimulate H9c2(2-1) myoblast-to-myotube differentiation. A substantial beta-glucuronidase activity was measured in H9c2(2-1) myotubes, and this confers a deconjugating capacity to these cells, via which native thyroid hormones can be regenerated from glucuronidated precursors. This indicates that the stimulatory effects on myoblast differentiation are exerted by the native hormones. We suggest that glucuronidation represents a mechanism to uncouple local thyroid hormone action in the heart from that in other peripheral tissues and in the systemic circulation. This could represent a mechanism for the local fine-tuning of cardiac thyroid hormone action.


Subject(s)
Cell Differentiation/drug effects , Glucuronates/pharmacology , Muscle Fibers, Skeletal/metabolism , Myoblasts/metabolism , Triiodothyronine/analogs & derivatives , Animals , Cell Line , Fibroblasts/cytology , Fibroblasts/metabolism , Glucuronates/metabolism , Muscle Fibers, Skeletal/cytology , Myoblasts/cytology , Myocardium/metabolism , Rats , Rats, Wistar , Triiodothyronine/metabolism , Triiodothyronine/pharmacology
3.
Am J Vet Res ; 66(7): 1252-8, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16111166

ABSTRACT

OBJECTIVE: To investigate the effects of moderate short-term training on K+ regulation in plasma and erythrocytes during exercise and on skeletal muscle Na+,K(+)-ATPase concentration in young adult and middle-aged horses. ANIMALS: Four 4- to 6-year-old and four 10- to 16-year-old Dutch Warmblood horses. PROCEDURE: The horses underwent a 6-minute exercise trial before and after 12 days of training. Skeletal muscle Na+,K(+)-ATPase concentration was analyzed in gluteus medius and semitendinosus muscle specimens before and after the 12-day training period. Blood samples were collected before and immediately after the trials and at 3, 5, 7, and 10 minutes after cessation of exercise for assessment of several hematologic variables and analysis of plasma and whole-blood K+ concentrations. RESULTS: After training, Na+,K(+)-ATPase concentration in the gluteus medius, but not semitendinosus, muscle of middle-aged horses increased (32%), compared with pretraining values; this did not affect the degree of hyperkalemia that developed during exercise. The development of hyperkalemia during exercise in young adult horses was blunted (albeit not significantly) without any change in the concentration of Na+,K(+)-ATPase in either of the muscles. After training, the erythrocyte K+ concentration increased (7% to 10%) significantly in both groups of horses but did not change during the exercise trials. CONCLUSIONS AND CLINICAL RELEVANCE: In horses, the activation of skeletal muscle Na+,K(+)-ATPase during exercise is likely to decrease with age. Training appears to result in an increase in Na+,K(+)-ATPase activity in skeletal muscle with subsequent upregulation of Na+,K(+)-ATPase concentration if the existing Na+,K(+)-ATPase capacity cannot meet requirements.


Subject(s)
Horses/metabolism , Muscle, Skeletal/enzymology , Physical Conditioning, Animal/physiology , Potassium/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Aging/metabolism , Animals , Homeostasis , Potassium/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...