Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurochem ; 159(3): 554-573, 2021 11.
Article in English | MEDLINE | ID: mdl-34176164

ABSTRACT

Regional iron accumulation and α-synuclein (α-syn) spreading pathology within the central nervous system are common pathological findings in Parkinson's disease (PD). Whereas iron is known to bind to α-syn, facilitating its aggregation and regulating α-syn expression, it remains unclear if and how iron also modulates α-syn spreading. To elucidate the influence of iron on the propagation of α-syn pathology, we investigated α-syn spreading after stereotactic injection of α-syn preformed fibrils (PFFs) into the striatum of mouse brains after neonatal brain iron enrichment. C57Bl/6J mouse pups received oral gavage with 60, 120, or 240 mg/kg carbonyl iron or vehicle between postnatal days 10 and 17. At 12 weeks of age, intrastriatal injections of 5-µg PFFs were performed to induce seeding of α-syn aggregates. At 90 days post-injection, PFFs-injected mice displayed long-term memory deficits, without affection of motor behavior. Interestingly, quantification of α-syn phosphorylated at S129 showed reduced α-syn pathology and attenuated spreading to connectome-specific brain regions after brain iron enrichment. Furthermore, PFFs injection caused intrastriatal microglia accumulation, which was alleviated by iron in a dose-dependent way. In primary cortical neurons in a microfluidic chamber model in vitro, iron application did not alter trans-synaptic α-syn propagation, possibly indicating an involvement of non-neuronal cells in this process. Our study suggests that α-syn PFFs may induce cognitive deficits in mice independent of iron. However, a redistribution of α-syn aggregate pathology and reduction of striatal microglia accumulation in the mouse brain may be mediated via iron-induced alterations of the brain connectome.


Subject(s)
Brain Chemistry , Iron/pharmacology , Synucleinopathies/metabolism , Synucleinopathies/pathology , alpha-Synuclein/metabolism , alpha-Synuclein/toxicity , Animals , Animals, Newborn , Connectome , Corpus Striatum , Dose-Response Relationship, Drug , Female , Humans , Iron/administration & dosage , Male , Memory Disorders/chemically induced , Memory Disorders/psychology , Mice, Inbred C57BL , Microglia/pathology , Microinjections , Motor Activity/drug effects , alpha-Synuclein/administration & dosage
2.
Biomed Opt Express ; 11(7): 3423-3443, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-33014542

ABSTRACT

In this work we use scanning X-ray microscopy to study the structure and elemental composition of neuromelanin-positive neurons in substantia nigra tissue of Parkinson patients (PD) and controls. A total of 53 neurons were analyzed with X-ray fluorescence (XRF) and diffraction using sub-µm-focused synchrotron radiation. A statistical evaluation identified copper as the most group-discriminating element and indicated that interindividual and intraindividual variations are of great relevance in tissue measurements of diseased patients and prevent from automated group clustering. XRF analyses of two Lewy bodies (LBs) highlight a heterogeneity in elemental distributions in these LBs, whereas an innovative X-ray diffraction-based method approach was used to reveal ß-sheet-rich crystalline structures in LBs. Overall, sub-µm-focus X-ray microscopy highlighted the elemental heterogeneity in PD pathology.

3.
Front Neurosci ; 13: 15, 2019.
Article in English | MEDLINE | ID: mdl-30723395

ABSTRACT

The homeostasis of iron is of fundamental importance in the central nervous system (CNS) to ensure biological processes such as oxygen transport, mitochondrial respiration or myelin synthesis. Dyshomeostasis and accumulation of iron can be observed during aging and both are shared characteristics of several neurodegenerative diseases. Iron-mediated generation of reactive oxygen species (ROS) may lead to protein aggregation and cellular toxicity. The process of misfolding and aggregation of neuronal proteins such as α-synuclein, Tau, amyloid beta (Aß), TDP-43 or SOD1 is a common hallmark of many neurodegenerative disorders and iron has been shown to facilitate protein aggregation. Thus, both, iron and aggregating proteins are proposed to amplify their detrimental effects in the disease state. In this review, we give an overview on effects of iron on aggregation of different proteins involved in neurodegeneration. Furthermore, we discuss the proposed mechanisms of iron-mediated toxicity and protein aggregation emphasizing the red-ox chemistry and protein-binding properties of iron. Finally, we address current therapeutic approaches harnessing iron chelation as a disease-modifying intervention in neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...